Metamath Proof Explorer


Theorem mapdheq4

Description: Lemma for ~? mapdh . Part (4) in Baer p. 46. (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdhe4.y φ Y V 0 ˙
mapdhe.z φ Z V 0 ˙
mapdh.xn φ ¬ X N Y Z
mapdh.yz φ N Y N Z
mapdh.eg φ I X F Y = G
mapdh.ee φ I X F Z = E
Assertion mapdheq4 φ I Y G Z = E

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdhe4.y φ Y V 0 ˙
19 mapdhe.z φ Z V 0 ˙
20 mapdh.xn φ ¬ X N Y Z
21 mapdh.yz φ N Y N Z
22 mapdh.eg φ I X F Y = G
23 mapdh.ee φ I X F Z = E
24 19 eldifad φ Z V
25 3 5 14 dvhlvec φ U LVec
26 17 eldifad φ X V
27 6 8 9 25 18 24 26 21 20 lspindp1 φ N X N Z ¬ Y N X Z
28 27 simpld φ N X N Z
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 28 mapdhcl φ I X F Z D
30 23 29 eqeltrrd φ E D
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 30 28 mapdheq φ I X F Z = E M N Z = J E M N X - ˙ Z = J F R E
32 23 31 mpbid φ M N Z = J E M N X - ˙ Z = J F R E
33 32 simpld φ M N Z = J E
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 mapdheq4lem φ M N Y - ˙ Z = J G R E
35 18 eldifad φ Y V
36 6 8 9 25 35 19 26 21 20 lspindp2 φ N X N Y ¬ Z N X Y
37 36 simpld φ N X N Y
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 35 37 mapdhcl φ I X F Y D
39 22 38 eqeltrrd φ G D
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 37 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
41 22 40 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
42 41 simpld φ M N Y = J G
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 42 18 19 30 21 mapdheq φ I Y G Z = E M N Z = J E M N Y - ˙ Z = J G R E
44 33 34 43 mpbir2and φ I Y G Z = E