Metamath Proof Explorer


Theorem mapdvalc

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h H=LHypK
mapdval.u U=DVecHKW
mapdval.s S=LSubSpU
mapdval.f F=LFnlU
mapdval.l L=LKerU
mapdval.o O=ocHKW
mapdval.m M=mapdKW
mapdval.k φKXWH
mapdval.t φTS
mapdvalc.c C=gF|OOLg=Lg
Assertion mapdvalc φMT=fC|OLfT

Proof

Step Hyp Ref Expression
1 mapdval.h H=LHypK
2 mapdval.u U=DVecHKW
3 mapdval.s S=LSubSpU
4 mapdval.f F=LFnlU
5 mapdval.l L=LKerU
6 mapdval.o O=ocHKW
7 mapdval.m M=mapdKW
8 mapdval.k φKXWH
9 mapdval.t φTS
10 mapdvalc.c C=gF|OOLg=Lg
11 1 2 3 4 5 6 7 8 9 mapdval φMT=fF|OOLf=LfOLfT
12 anass fFOOLf=LfOLfTfFOOLf=LfOLfT
13 10 lcfl1lem fCfFOOLf=Lf
14 13 anbi1i fCOLfTfFOOLf=LfOLfT
15 14 bicomi fFOOLf=LfOLfTfCOLfT
16 15 a1i φfFOOLf=LfOLfTfCOLfT
17 12 16 bitr3id φfFOOLf=LfOLfTfCOLfT
18 17 rabbidva2 φfF|OOLf=LfOLfT=fC|OLfT
19 11 18 eqtrd φMT=fC|OLfT