| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1dim.a |  | 
						
							| 2 |  | mat1dim.b |  | 
						
							| 3 |  | mat1dim.o |  | 
						
							| 4 |  | snfi |  | 
						
							| 5 |  | crngring |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 1 | matring |  | 
						
							| 8 | 4 6 7 | sylancr |  | 
						
							| 9 | 1 2 3 | mat1dimelbas |  | 
						
							| 10 | 1 2 3 | mat1dimelbas |  | 
						
							| 11 | 9 10 | anbi12d |  | 
						
							| 12 | 5 11 | sylan |  | 
						
							| 13 |  | simpll |  | 
						
							| 14 |  | simprl |  | 
						
							| 15 |  | simprr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 2 16 | crngcom |  | 
						
							| 18 | 13 14 15 17 | syl3anc |  | 
						
							| 19 | 18 | opeq2d |  | 
						
							| 20 | 19 | sneqd |  | 
						
							| 21 | 5 | anim1i |  | 
						
							| 22 | 1 2 3 | mat1dimmul |  | 
						
							| 23 | 21 22 | sylan |  | 
						
							| 24 |  | pm3.22 |  | 
						
							| 25 | 1 2 3 | mat1dimmul |  | 
						
							| 26 | 21 24 25 | syl2an |  | 
						
							| 27 | 20 23 26 | 3eqtr4d |  | 
						
							| 28 | 27 | expr |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | imp |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | oveq12 |  | 
						
							| 33 | 32 | ad4ant24 |  | 
						
							| 34 |  | oveq12 |  | 
						
							| 35 | 34 | expcom |  | 
						
							| 36 | 35 | ad2antlr |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 | 31 33 37 | 3eqtr4d |  | 
						
							| 39 | 38 | rexlimdva2 |  | 
						
							| 40 | 39 | rexlimdva2 |  | 
						
							| 41 | 40 | impd |  | 
						
							| 42 | 12 41 | sylbid |  | 
						
							| 43 | 42 | ralrimivv |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 44 45 | iscrng2 |  | 
						
							| 47 | 8 43 46 | sylanbrc |  |