| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1dim.a |  |-  A = ( { E } Mat R ) | 
						
							| 2 |  | mat1dim.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | mat1dim.o |  |-  O = <. E , E >. | 
						
							| 4 |  | snfi |  |-  { E } e. Fin | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. CRing /\ E e. V ) -> R e. Ring ) | 
						
							| 7 | 1 | matring |  |-  ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 8 | 4 6 7 | sylancr |  |-  ( ( R e. CRing /\ E e. V ) -> A e. Ring ) | 
						
							| 9 | 1 2 3 | mat1dimelbas |  |-  ( ( R e. Ring /\ E e. V ) -> ( x e. ( Base ` A ) <-> E. a e. B x = { <. O , a >. } ) ) | 
						
							| 10 | 1 2 3 | mat1dimelbas |  |-  ( ( R e. Ring /\ E e. V ) -> ( y e. ( Base ` A ) <-> E. b e. B y = { <. O , b >. } ) ) | 
						
							| 11 | 9 10 | anbi12d |  |-  ( ( R e. Ring /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) | 
						
							| 12 | 5 11 | sylan |  |-  ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) <-> ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) ) ) | 
						
							| 13 |  | simpll |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> R e. CRing ) | 
						
							| 14 |  | simprl |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) | 
						
							| 15 |  | simprr |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) | 
						
							| 16 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 17 | 2 16 | crngcom |  |-  ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) | 
						
							| 18 | 13 14 15 17 | syl3anc |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) | 
						
							| 19 | 18 | opeq2d |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> <. O , ( a ( .r ` R ) b ) >. = <. O , ( b ( .r ` R ) a ) >. ) | 
						
							| 20 | 19 | sneqd |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> { <. O , ( a ( .r ` R ) b ) >. } = { <. O , ( b ( .r ` R ) a ) >. } ) | 
						
							| 21 | 5 | anim1i |  |-  ( ( R e. CRing /\ E e. V ) -> ( R e. Ring /\ E e. V ) ) | 
						
							| 22 | 1 2 3 | mat1dimmul |  |-  ( ( ( R e. Ring /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) | 
						
							| 23 | 21 22 | sylan |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = { <. O , ( a ( .r ` R ) b ) >. } ) | 
						
							| 24 |  | pm3.22 |  |-  ( ( a e. B /\ b e. B ) -> ( b e. B /\ a e. B ) ) | 
						
							| 25 | 1 2 3 | mat1dimmul |  |-  ( ( ( R e. Ring /\ E e. V ) /\ ( b e. B /\ a e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) | 
						
							| 26 | 21 24 25 | syl2an |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) = { <. O , ( b ( .r ` R ) a ) >. } ) | 
						
							| 27 | 20 23 26 | 3eqtr4d |  |-  ( ( ( R e. CRing /\ E e. V ) /\ ( a e. B /\ b e. B ) ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) | 
						
							| 28 | 27 | expr |  |-  ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( b e. B -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) | 
						
							| 32 |  | oveq12 |  |-  ( ( x = { <. O , a >. } /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) | 
						
							| 33 | 32 | ad4ant24 |  |-  ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( { <. O , a >. } ( .r ` A ) { <. O , b >. } ) ) | 
						
							| 34 |  | oveq12 |  |-  ( ( y = { <. O , b >. } /\ x = { <. O , a >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) | 
						
							| 35 | 34 | expcom |  |-  ( x = { <. O , a >. } -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) | 
						
							| 36 | 35 | ad2antlr |  |-  ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) -> ( y = { <. O , b >. } -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( y ( .r ` A ) x ) = ( { <. O , b >. } ( .r ` A ) { <. O , a >. } ) ) | 
						
							| 38 | 31 33 37 | 3eqtr4d |  |-  ( ( ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) /\ b e. B ) /\ y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) | 
						
							| 39 | 38 | rexlimdva2 |  |-  ( ( ( ( R e. CRing /\ E e. V ) /\ a e. B ) /\ x = { <. O , a >. } ) -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) | 
						
							| 40 | 39 | rexlimdva2 |  |-  ( ( R e. CRing /\ E e. V ) -> ( E. a e. B x = { <. O , a >. } -> ( E. b e. B y = { <. O , b >. } -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) ) | 
						
							| 41 | 40 | impd |  |-  ( ( R e. CRing /\ E e. V ) -> ( ( E. a e. B x = { <. O , a >. } /\ E. b e. B y = { <. O , b >. } ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) | 
						
							| 42 | 12 41 | sylbid |  |-  ( ( R e. CRing /\ E e. V ) -> ( ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) -> ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) | 
						
							| 43 | 42 | ralrimivv |  |-  ( ( R e. CRing /\ E e. V ) -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) | 
						
							| 44 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 45 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 46 | 44 45 | iscrng2 |  |-  ( A e. CRing <-> ( A e. Ring /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) | 
						
							| 47 | 8 43 46 | sylanbrc |  |-  ( ( R e. CRing /\ E e. V ) -> A e. CRing ) |