| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1dim.a |
|
| 2 |
|
mat1dim.b |
|
| 3 |
|
mat1dim.o |
|
| 4 |
|
snfi |
|
| 5 |
|
crngring |
|
| 6 |
5
|
adantr |
|
| 7 |
1
|
matring |
|
| 8 |
4 6 7
|
sylancr |
|
| 9 |
1 2 3
|
mat1dimelbas |
|
| 10 |
1 2 3
|
mat1dimelbas |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
5 11
|
sylan |
|
| 13 |
|
simpll |
|
| 14 |
|
simprl |
|
| 15 |
|
simprr |
|
| 16 |
|
eqid |
|
| 17 |
2 16
|
crngcom |
|
| 18 |
13 14 15 17
|
syl3anc |
|
| 19 |
18
|
opeq2d |
|
| 20 |
19
|
sneqd |
|
| 21 |
5
|
anim1i |
|
| 22 |
1 2 3
|
mat1dimmul |
|
| 23 |
21 22
|
sylan |
|
| 24 |
|
pm3.22 |
|
| 25 |
1 2 3
|
mat1dimmul |
|
| 26 |
21 24 25
|
syl2an |
|
| 27 |
20 23 26
|
3eqtr4d |
|
| 28 |
27
|
expr |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
imp |
|
| 31 |
30
|
adantr |
|
| 32 |
|
oveq12 |
|
| 33 |
32
|
ad4ant24 |
|
| 34 |
|
oveq12 |
|
| 35 |
34
|
expcom |
|
| 36 |
35
|
ad2antlr |
|
| 37 |
36
|
imp |
|
| 38 |
31 33 37
|
3eqtr4d |
|
| 39 |
38
|
rexlimdva2 |
|
| 40 |
39
|
rexlimdva2 |
|
| 41 |
40
|
impd |
|
| 42 |
12 41
|
sylbid |
|
| 43 |
42
|
ralrimivv |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
44 45
|
iscrng2 |
|
| 47 |
8 43 46
|
sylanbrc |
|