| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1scmat.a |
|
| 2 |
|
mat1scmat.b |
|
| 3 |
|
hash1snb |
|
| 4 |
|
simpr |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
5 6 7
|
mat1dimelbas |
|
| 9 |
8
|
elvd |
|
| 10 |
|
simpr |
|
| 11 |
|
vex |
|
| 12 |
11
|
a1i |
|
| 13 |
5 6 7
|
mat1dimid |
|
| 14 |
12 13
|
sylan2 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
simpl |
|
| 17 |
16 11
|
jctir |
|
| 18 |
|
simpr |
|
| 19 |
|
eqid |
|
| 20 |
6 19
|
ringidcl |
|
| 21 |
20
|
adantr |
|
| 22 |
5 6 7
|
mat1dimscm |
|
| 23 |
17 18 21 22
|
syl12anc |
|
| 24 |
|
eqid |
|
| 25 |
6 24 19
|
ringridm |
|
| 26 |
25
|
opeq2d |
|
| 27 |
26
|
sneqd |
|
| 28 |
15 23 27
|
3eqtrrd |
|
| 29 |
28
|
adantr |
|
| 30 |
10 29
|
eqtrd |
|
| 31 |
30
|
ex |
|
| 32 |
31
|
reximdva |
|
| 33 |
9 32
|
sylbid |
|
| 34 |
33
|
imp |
|
| 35 |
|
snfi |
|
| 36 |
|
simpl |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
6 5 37 38 39 40
|
scmatel |
|
| 42 |
35 36 41
|
sylancr |
|
| 43 |
4 34 42
|
mpbir2and |
|
| 44 |
43
|
ex |
|
| 45 |
1
|
fveq2i |
|
| 46 |
2 45
|
eqtri |
|
| 47 |
|
fvoveq1 |
|
| 48 |
46 47
|
eqtrid |
|
| 49 |
48
|
eleq2d |
|
| 50 |
|
oveq1 |
|
| 51 |
50
|
eleq2d |
|
| 52 |
49 51
|
imbi12d |
|
| 53 |
44 52
|
imbitrrid |
|
| 54 |
53
|
exlimiv |
|
| 55 |
3 54
|
biimtrdi |
|
| 56 |
55
|
3imp |
|