| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1scmat.a |  | 
						
							| 2 |  | mat1scmat.b |  | 
						
							| 3 |  | hash1snb |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 5 6 7 | mat1dimelbas |  | 
						
							| 9 | 8 | elvd |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 |  | vex |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 | 5 6 7 | mat1dimid |  | 
						
							| 14 | 12 13 | sylan2 |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 | 16 11 | jctir |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 6 19 | ringidcl |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 5 6 7 | mat1dimscm |  | 
						
							| 23 | 17 18 21 22 | syl12anc |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 6 24 19 | ringridm |  | 
						
							| 26 | 25 | opeq2d |  | 
						
							| 27 | 26 | sneqd |  | 
						
							| 28 | 15 23 27 | 3eqtrrd |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 10 29 | eqtrd |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 31 | reximdva |  | 
						
							| 33 | 9 32 | sylbid |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 |  | snfi |  | 
						
							| 36 |  | simpl |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 6 5 37 38 39 40 | scmatel |  | 
						
							| 42 | 35 36 41 | sylancr |  | 
						
							| 43 | 4 34 42 | mpbir2and |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 | 1 | fveq2i |  | 
						
							| 46 | 2 45 | eqtri |  | 
						
							| 47 |  | fvoveq1 |  | 
						
							| 48 | 46 47 | eqtrid |  | 
						
							| 49 | 48 | eleq2d |  | 
						
							| 50 |  | oveq1 |  | 
						
							| 51 | 50 | eleq2d |  | 
						
							| 52 | 49 51 | imbi12d |  | 
						
							| 53 | 44 52 | imbitrrid |  | 
						
							| 54 | 53 | exlimiv |  | 
						
							| 55 | 3 54 | biimtrdi |  | 
						
							| 56 | 55 | 3imp |  |