Metamath Proof Explorer


Theorem mat1scmat

Description: A 1-dimensional matrix over a ring is always a scalar matrix (and therefore, by scmatdmat , also a diagonal matrix). (Contributed by AV, 21-Dec-2019)

Ref Expression
Hypotheses mat1scmat.a A = N Mat R
mat1scmat.b B = Base A
Assertion mat1scmat N V N = 1 R Ring M B M N ScMat R

Proof

Step Hyp Ref Expression
1 mat1scmat.a A = N Mat R
2 mat1scmat.b B = Base A
3 hash1snb N V N = 1 e N = e
4 simpr R Ring M Base e Mat R M Base e Mat R
5 eqid e Mat R = e Mat R
6 eqid Base R = Base R
7 eqid e e = e e
8 5 6 7 mat1dimelbas R Ring e V M Base e Mat R c Base R M = e e c
9 8 elvd R Ring M Base e Mat R c Base R M = e e c
10 simpr R Ring c Base R M = e e c M = e e c
11 vex e V
12 11 a1i c Base R e V
13 5 6 7 mat1dimid R Ring e V 1 e Mat R = e e 1 R
14 12 13 sylan2 R Ring c Base R 1 e Mat R = e e 1 R
15 14 oveq2d R Ring c Base R c e Mat R 1 e Mat R = c e Mat R e e 1 R
16 simpl R Ring c Base R R Ring
17 16 11 jctir R Ring c Base R R Ring e V
18 simpr R Ring c Base R c Base R
19 eqid 1 R = 1 R
20 6 19 ringidcl R Ring 1 R Base R
21 20 adantr R Ring c Base R 1 R Base R
22 5 6 7 mat1dimscm R Ring e V c Base R 1 R Base R c e Mat R e e 1 R = e e c R 1 R
23 17 18 21 22 syl12anc R Ring c Base R c e Mat R e e 1 R = e e c R 1 R
24 eqid R = R
25 6 24 19 ringridm R Ring c Base R c R 1 R = c
26 25 opeq2d R Ring c Base R e e c R 1 R = e e c
27 26 sneqd R Ring c Base R e e c R 1 R = e e c
28 15 23 27 3eqtrrd R Ring c Base R e e c = c e Mat R 1 e Mat R
29 28 adantr R Ring c Base R M = e e c e e c = c e Mat R 1 e Mat R
30 10 29 eqtrd R Ring c Base R M = e e c M = c e Mat R 1 e Mat R
31 30 ex R Ring c Base R M = e e c M = c e Mat R 1 e Mat R
32 31 reximdva R Ring c Base R M = e e c c Base R M = c e Mat R 1 e Mat R
33 9 32 sylbid R Ring M Base e Mat R c Base R M = c e Mat R 1 e Mat R
34 33 imp R Ring M Base e Mat R c Base R M = c e Mat R 1 e Mat R
35 snfi e Fin
36 simpl R Ring M Base e Mat R R Ring
37 eqid Base e Mat R = Base e Mat R
38 eqid 1 e Mat R = 1 e Mat R
39 eqid e Mat R = e Mat R
40 eqid e ScMat R = e ScMat R
41 6 5 37 38 39 40 scmatel e Fin R Ring M e ScMat R M Base e Mat R c Base R M = c e Mat R 1 e Mat R
42 35 36 41 sylancr R Ring M Base e Mat R M e ScMat R M Base e Mat R c Base R M = c e Mat R 1 e Mat R
43 4 34 42 mpbir2and R Ring M Base e Mat R M e ScMat R
44 43 ex R Ring M Base e Mat R M e ScMat R
45 1 fveq2i Base A = Base N Mat R
46 2 45 eqtri B = Base N Mat R
47 fvoveq1 N = e Base N Mat R = Base e Mat R
48 46 47 eqtrid N = e B = Base e Mat R
49 48 eleq2d N = e M B M Base e Mat R
50 oveq1 N = e N ScMat R = e ScMat R
51 50 eleq2d N = e M N ScMat R M e ScMat R
52 49 51 imbi12d N = e M B M N ScMat R M Base e Mat R M e ScMat R
53 44 52 syl5ibr N = e R Ring M B M N ScMat R
54 53 exlimiv e N = e R Ring M B M N ScMat R
55 3 54 syl6bi N V N = 1 R Ring M B M N ScMat R
56 55 3imp N V N = 1 R Ring M B M N ScMat R