Description: A 1-dimensional matrix over a ring is always a scalar matrix (and therefore, by scmatdmat , also a diagonal matrix). (Contributed by AV, 21-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mat1scmat.a | |
|
mat1scmat.b | |
||
Assertion | mat1scmat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1scmat.a | |
|
2 | mat1scmat.b | |
|
3 | hash1snb | |
|
4 | simpr | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 5 6 7 | mat1dimelbas | |
9 | 8 | elvd | |
10 | simpr | |
|
11 | vex | |
|
12 | 11 | a1i | |
13 | 5 6 7 | mat1dimid | |
14 | 12 13 | sylan2 | |
15 | 14 | oveq2d | |
16 | simpl | |
|
17 | 16 11 | jctir | |
18 | simpr | |
|
19 | eqid | |
|
20 | 6 19 | ringidcl | |
21 | 20 | adantr | |
22 | 5 6 7 | mat1dimscm | |
23 | 17 18 21 22 | syl12anc | |
24 | eqid | |
|
25 | 6 24 19 | ringridm | |
26 | 25 | opeq2d | |
27 | 26 | sneqd | |
28 | 15 23 27 | 3eqtrrd | |
29 | 28 | adantr | |
30 | 10 29 | eqtrd | |
31 | 30 | ex | |
32 | 31 | reximdva | |
33 | 9 32 | sylbid | |
34 | 33 | imp | |
35 | snfi | |
|
36 | simpl | |
|
37 | eqid | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | 6 5 37 38 39 40 | scmatel | |
42 | 35 36 41 | sylancr | |
43 | 4 34 42 | mpbir2and | |
44 | 43 | ex | |
45 | 1 | fveq2i | |
46 | 2 45 | eqtri | |
47 | fvoveq1 | |
|
48 | 46 47 | eqtrid | |
49 | 48 | eleq2d | |
50 | oveq1 | |
|
51 | 50 | eleq2d | |
52 | 49 51 | imbi12d | |
53 | 44 52 | imbitrrid | |
54 | 53 | exlimiv | |
55 | 3 54 | syl6bi | |
56 | 55 | 3imp | |