Metamath Proof Explorer


Theorem mat1scmat

Description: A 1-dimensional matrix over a ring is always a scalar matrix (and therefore, by scmatdmat , also a diagonal matrix). (Contributed by AV, 21-Dec-2019)

Ref Expression
Hypotheses mat1scmat.a A=NMatR
mat1scmat.b B=BaseA
Assertion mat1scmat NVN=1RRingMBMNScMatR

Proof

Step Hyp Ref Expression
1 mat1scmat.a A=NMatR
2 mat1scmat.b B=BaseA
3 hash1snb NVN=1eN=e
4 simpr RRingMBaseeMatRMBaseeMatR
5 eqid eMatR=eMatR
6 eqid BaseR=BaseR
7 eqid ee=ee
8 5 6 7 mat1dimelbas RRingeVMBaseeMatRcBaseRM=eec
9 8 elvd RRingMBaseeMatRcBaseRM=eec
10 simpr RRingcBaseRM=eecM=eec
11 vex eV
12 11 a1i cBaseReV
13 5 6 7 mat1dimid RRingeV1eMatR=ee1R
14 12 13 sylan2 RRingcBaseR1eMatR=ee1R
15 14 oveq2d RRingcBaseRceMatR1eMatR=ceMatRee1R
16 simpl RRingcBaseRRRing
17 16 11 jctir RRingcBaseRRRingeV
18 simpr RRingcBaseRcBaseR
19 eqid 1R=1R
20 6 19 ringidcl RRing1RBaseR
21 20 adantr RRingcBaseR1RBaseR
22 5 6 7 mat1dimscm RRingeVcBaseR1RBaseRceMatRee1R=eecR1R
23 17 18 21 22 syl12anc RRingcBaseRceMatRee1R=eecR1R
24 eqid R=R
25 6 24 19 ringridm RRingcBaseRcR1R=c
26 25 opeq2d RRingcBaseReecR1R=eec
27 26 sneqd RRingcBaseReecR1R=eec
28 15 23 27 3eqtrrd RRingcBaseReec=ceMatR1eMatR
29 28 adantr RRingcBaseRM=eeceec=ceMatR1eMatR
30 10 29 eqtrd RRingcBaseRM=eecM=ceMatR1eMatR
31 30 ex RRingcBaseRM=eecM=ceMatR1eMatR
32 31 reximdva RRingcBaseRM=eeccBaseRM=ceMatR1eMatR
33 9 32 sylbid RRingMBaseeMatRcBaseRM=ceMatR1eMatR
34 33 imp RRingMBaseeMatRcBaseRM=ceMatR1eMatR
35 snfi eFin
36 simpl RRingMBaseeMatRRRing
37 eqid BaseeMatR=BaseeMatR
38 eqid 1eMatR=1eMatR
39 eqid eMatR=eMatR
40 eqid eScMatR=eScMatR
41 6 5 37 38 39 40 scmatel eFinRRingMeScMatRMBaseeMatRcBaseRM=ceMatR1eMatR
42 35 36 41 sylancr RRingMBaseeMatRMeScMatRMBaseeMatRcBaseRM=ceMatR1eMatR
43 4 34 42 mpbir2and RRingMBaseeMatRMeScMatR
44 43 ex RRingMBaseeMatRMeScMatR
45 1 fveq2i BaseA=BaseNMatR
46 2 45 eqtri B=BaseNMatR
47 fvoveq1 N=eBaseNMatR=BaseeMatR
48 46 47 eqtrid N=eB=BaseeMatR
49 48 eleq2d N=eMBMBaseeMatR
50 oveq1 N=eNScMatR=eScMatR
51 50 eleq2d N=eMNScMatRMeScMatR
52 49 51 imbi12d N=eMBMNScMatRMBaseeMatRMeScMatR
53 44 52 imbitrrid N=eRRingMBMNScMatR
54 53 exlimiv eN=eRRingMBMNScMatR
55 3 54 syl6bi NVN=1RRingMBMNScMatR
56 55 3imp NVN=1RRingMBMNScMatR