Step |
Hyp |
Ref |
Expression |
1 |
|
mat1scmat.a |
|
2 |
|
mat1scmat.b |
|
3 |
|
hash1snb |
|
4 |
|
simpr |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
5 6 7
|
mat1dimelbas |
|
9 |
8
|
elvd |
|
10 |
|
simpr |
|
11 |
|
vex |
|
12 |
11
|
a1i |
|
13 |
5 6 7
|
mat1dimid |
|
14 |
12 13
|
sylan2 |
|
15 |
14
|
oveq2d |
|
16 |
|
simpl |
|
17 |
16 11
|
jctir |
|
18 |
|
simpr |
|
19 |
|
eqid |
|
20 |
6 19
|
ringidcl |
|
21 |
20
|
adantr |
|
22 |
5 6 7
|
mat1dimscm |
|
23 |
17 18 21 22
|
syl12anc |
|
24 |
|
eqid |
|
25 |
6 24 19
|
ringridm |
|
26 |
25
|
opeq2d |
|
27 |
26
|
sneqd |
|
28 |
15 23 27
|
3eqtrrd |
|
29 |
28
|
adantr |
|
30 |
10 29
|
eqtrd |
|
31 |
30
|
ex |
|
32 |
31
|
reximdva |
|
33 |
9 32
|
sylbid |
|
34 |
33
|
imp |
|
35 |
|
snfi |
|
36 |
|
simpl |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
6 5 37 38 39 40
|
scmatel |
|
42 |
35 36 41
|
sylancr |
|
43 |
4 34 42
|
mpbir2and |
|
44 |
43
|
ex |
|
45 |
1
|
fveq2i |
|
46 |
2 45
|
eqtri |
|
47 |
|
fvoveq1 |
|
48 |
46 47
|
eqtrid |
|
49 |
48
|
eleq2d |
|
50 |
|
oveq1 |
|
51 |
50
|
eleq2d |
|
52 |
49 51
|
imbi12d |
|
53 |
44 52
|
syl5ibr |
|
54 |
53
|
exlimiv |
|
55 |
3 54
|
syl6bi |
|
56 |
55
|
3imp |
|