Metamath Proof Explorer


Theorem mat2pmatscmxcl

Description: A transformed matrix multiplied with a power of the variable of a polynomial is a polynomial matrix. (Contributed by AV, 6-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses mat2pmatscmxcl.a A=NMatR
mat2pmatscmxcl.k K=BaseA
mat2pmatscmxcl.t T=NmatToPolyMatR
mat2pmatscmxcl.p P=Poly1R
mat2pmatscmxcl.c C=NMatP
mat2pmatscmxcl.b B=BaseC
mat2pmatscmxcl.m ˙=C
mat2pmatscmxcl.e ×˙=mulGrpP
mat2pmatscmxcl.x X=var1R
Assertion mat2pmatscmxcl NFinRRingMKL0L×˙X˙TMB

Proof

Step Hyp Ref Expression
1 mat2pmatscmxcl.a A=NMatR
2 mat2pmatscmxcl.k K=BaseA
3 mat2pmatscmxcl.t T=NmatToPolyMatR
4 mat2pmatscmxcl.p P=Poly1R
5 mat2pmatscmxcl.c C=NMatP
6 mat2pmatscmxcl.b B=BaseC
7 mat2pmatscmxcl.m ˙=C
8 mat2pmatscmxcl.e ×˙=mulGrpP
9 mat2pmatscmxcl.x X=var1R
10 simpll NFinRRingMKL0NFin
11 4 ply1ring RRingPRing
12 11 ad2antlr NFinRRingMKL0PRing
13 eqid mulGrpP=mulGrpP
14 eqid BaseP=BaseP
15 4 9 13 8 14 ply1moncl RRingL0L×˙XBaseP
16 15 ad2ant2l NFinRRingMKL0L×˙XBaseP
17 simpl MKL0MK
18 17 anim2i NFinRRingMKL0NFinRRingMK
19 df-3an NFinRRingMKNFinRRingMK
20 18 19 sylibr NFinRRingMKL0NFinRRingMK
21 3 1 2 4 5 6 mat2pmatbas0 NFinRRingMKTMB
22 20 21 syl NFinRRingMKL0TMB
23 14 5 6 7 matvscl NFinPRingL×˙XBasePTMBL×˙X˙TMB
24 10 12 16 22 23 syl22anc NFinRRingMKL0L×˙X˙TMB