Description: Existence of the matrix algebra, see also the statement in Lang p. 505: "Then Mat_n(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | matassa.a | |
|
Assertion | matassa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matassa.a | |
|
2 | eqid | |
|
3 | 1 2 | matbas2 | |
4 | 1 | matsca2 | |
5 | eqidd | |
|
6 | eqidd | |
|
7 | eqid | |
|
8 | 1 7 | matmulr | |
9 | crngring | |
|
10 | 1 | matlmod | |
11 | 9 10 | sylan2 | |
12 | 1 | matring | |
13 | 9 12 | sylan2 | |
14 | 9 | ad2antlr | |
15 | simpll | |
|
16 | eqid | |
|
17 | simpr1 | |
|
18 | simpr2 | |
|
19 | simpr3 | |
|
20 | 2 14 7 15 15 15 16 17 18 19 | mamuvs1 | |
21 | 3 | adantr | |
22 | 18 21 | eleqtrd | |
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 1 23 2 24 16 25 | matvsca2 | |
27 | 17 22 26 | syl2anc | |
28 | 27 | oveq1d | |
29 | 2 14 7 15 15 15 18 19 | mamucl | |
30 | 29 21 | eleqtrd | |
31 | 1 23 2 24 16 25 | matvsca2 | |
32 | 17 30 31 | syl2anc | |
33 | 20 28 32 | 3eqtr4d | |
34 | simplr | |
|
35 | 34 2 16 7 15 15 15 18 17 19 | mamuvs2 | |
36 | 19 21 | eleqtrd | |
37 | 1 23 2 24 16 25 | matvsca2 | |
38 | 17 36 37 | syl2anc | |
39 | 38 | oveq2d | |
40 | 35 39 32 | 3eqtr4d | |
41 | 3 4 5 6 8 11 13 33 40 | isassad | |