Metamath Proof Explorer


Theorem matassa

Description: Existence of the matrix algebra, see also the statement in Lang p. 505: "Then Mat_n(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis matassa.a A=NMatR
Assertion matassa NFinRCRingAAssAlg

Proof

Step Hyp Ref Expression
1 matassa.a A=NMatR
2 eqid BaseR=BaseR
3 1 2 matbas2 NFinRCRingBaseRN×N=BaseA
4 1 matsca2 NFinRCRingR=ScalarA
5 eqidd NFinRCRingBaseR=BaseR
6 eqidd NFinRCRingA=A
7 eqid RmaMulNNN=RmaMulNNN
8 1 7 matmulr NFinRCRingRmaMulNNN=A
9 crngring RCRingRRing
10 1 matlmod NFinRRingALMod
11 9 10 sylan2 NFinRCRingALMod
12 1 matring NFinRRingARing
13 9 12 sylan2 NFinRCRingARing
14 9 ad2antlr NFinRCRingxBaseRyBaseRN×NzBaseRN×NRRing
15 simpll NFinRCRingxBaseRyBaseRN×NzBaseRN×NNFin
16 eqid R=R
17 simpr1 NFinRCRingxBaseRyBaseRN×NzBaseRN×NxBaseR
18 simpr2 NFinRCRingxBaseRyBaseRN×NzBaseRN×NyBaseRN×N
19 simpr3 NFinRCRingxBaseRyBaseRN×NzBaseRN×NzBaseRN×N
20 2 14 7 15 15 15 16 17 18 19 mamuvs1 NFinRCRingxBaseRyBaseRN×NzBaseRN×NN×N×xRfyRmaMulNNNz=N×N×xRfyRmaMulNNNz
21 3 adantr NFinRCRingxBaseRyBaseRN×NzBaseRN×NBaseRN×N=BaseA
22 18 21 eleqtrd NFinRCRingxBaseRyBaseRN×NzBaseRN×NyBaseA
23 eqid BaseA=BaseA
24 eqid A=A
25 eqid N×N=N×N
26 1 23 2 24 16 25 matvsca2 xBaseRyBaseAxAy=N×N×xRfy
27 17 22 26 syl2anc NFinRCRingxBaseRyBaseRN×NzBaseRN×NxAy=N×N×xRfy
28 27 oveq1d NFinRCRingxBaseRyBaseRN×NzBaseRN×NxAyRmaMulNNNz=N×N×xRfyRmaMulNNNz
29 2 14 7 15 15 15 18 19 mamucl NFinRCRingxBaseRyBaseRN×NzBaseRN×NyRmaMulNNNzBaseRN×N
30 29 21 eleqtrd NFinRCRingxBaseRyBaseRN×NzBaseRN×NyRmaMulNNNzBaseA
31 1 23 2 24 16 25 matvsca2 xBaseRyRmaMulNNNzBaseAxAyRmaMulNNNz=N×N×xRfyRmaMulNNNz
32 17 30 31 syl2anc NFinRCRingxBaseRyBaseRN×NzBaseRN×NxAyRmaMulNNNz=N×N×xRfyRmaMulNNNz
33 20 28 32 3eqtr4d NFinRCRingxBaseRyBaseRN×NzBaseRN×NxAyRmaMulNNNz=xAyRmaMulNNNz
34 simplr NFinRCRingxBaseRyBaseRN×NzBaseRN×NRCRing
35 34 2 16 7 15 15 15 18 17 19 mamuvs2 NFinRCRingxBaseRyBaseRN×NzBaseRN×NyRmaMulNNNN×N×xRfz=N×N×xRfyRmaMulNNNz
36 19 21 eleqtrd NFinRCRingxBaseRyBaseRN×NzBaseRN×NzBaseA
37 1 23 2 24 16 25 matvsca2 xBaseRzBaseAxAz=N×N×xRfz
38 17 36 37 syl2anc NFinRCRingxBaseRyBaseRN×NzBaseRN×NxAz=N×N×xRfz
39 38 oveq2d NFinRCRingxBaseRyBaseRN×NzBaseRN×NyRmaMulNNNxAz=yRmaMulNNNN×N×xRfz
40 35 39 32 3eqtr4d NFinRCRingxBaseRyBaseRN×NzBaseRN×NyRmaMulNNNxAz=xAyRmaMulNNNz
41 3 4 5 6 8 11 13 33 40 isassad NFinRCRingAAssAlg