Metamath Proof Explorer


Theorem matassa

Description: Existence of the matrix algebra, see also the statement in Lang p. 505: "Then Mat_n(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis matassa.a A = N Mat R
Assertion matassa N Fin R CRing A AssAlg

Proof

Step Hyp Ref Expression
1 matassa.a A = N Mat R
2 eqid Base R = Base R
3 1 2 matbas2 N Fin R CRing Base R N × N = Base A
4 1 matsca2 N Fin R CRing R = Scalar A
5 eqidd N Fin R CRing Base R = Base R
6 eqidd N Fin R CRing A = A
7 eqid R maMul N N N = R maMul N N N
8 1 7 matmulr N Fin R CRing R maMul N N N = A
9 crngring R CRing R Ring
10 1 matlmod N Fin R Ring A LMod
11 9 10 sylan2 N Fin R CRing A LMod
12 1 matring N Fin R Ring A Ring
13 9 12 sylan2 N Fin R CRing A Ring
14 simpr N Fin R CRing R CRing
15 9 ad2antlr N Fin R CRing x Base R y Base R N × N z Base R N × N R Ring
16 simpll N Fin R CRing x Base R y Base R N × N z Base R N × N N Fin
17 eqid R = R
18 simpr1 N Fin R CRing x Base R y Base R N × N z Base R N × N x Base R
19 simpr2 N Fin R CRing x Base R y Base R N × N z Base R N × N y Base R N × N
20 simpr3 N Fin R CRing x Base R y Base R N × N z Base R N × N z Base R N × N
21 2 15 7 16 16 16 17 18 19 20 mamuvs1 N Fin R CRing x Base R y Base R N × N z Base R N × N N × N × x R f y R maMul N N N z = N × N × x R f y R maMul N N N z
22 3 adantr N Fin R CRing x Base R y Base R N × N z Base R N × N Base R N × N = Base A
23 19 22 eleqtrd N Fin R CRing x Base R y Base R N × N z Base R N × N y Base A
24 eqid Base A = Base A
25 eqid A = A
26 eqid N × N = N × N
27 1 24 2 25 17 26 matvsca2 x Base R y Base A x A y = N × N × x R f y
28 18 23 27 syl2anc N Fin R CRing x Base R y Base R N × N z Base R N × N x A y = N × N × x R f y
29 28 oveq1d N Fin R CRing x Base R y Base R N × N z Base R N × N x A y R maMul N N N z = N × N × x R f y R maMul N N N z
30 2 15 7 16 16 16 19 20 mamucl N Fin R CRing x Base R y Base R N × N z Base R N × N y R maMul N N N z Base R N × N
31 30 22 eleqtrd N Fin R CRing x Base R y Base R N × N z Base R N × N y R maMul N N N z Base A
32 1 24 2 25 17 26 matvsca2 x Base R y R maMul N N N z Base A x A y R maMul N N N z = N × N × x R f y R maMul N N N z
33 18 31 32 syl2anc N Fin R CRing x Base R y Base R N × N z Base R N × N x A y R maMul N N N z = N × N × x R f y R maMul N N N z
34 21 29 33 3eqtr4d N Fin R CRing x Base R y Base R N × N z Base R N × N x A y R maMul N N N z = x A y R maMul N N N z
35 simplr N Fin R CRing x Base R y Base R N × N z Base R N × N R CRing
36 35 2 17 7 16 16 16 19 18 20 mamuvs2 N Fin R CRing x Base R y Base R N × N z Base R N × N y R maMul N N N N × N × x R f z = N × N × x R f y R maMul N N N z
37 20 22 eleqtrd N Fin R CRing x Base R y Base R N × N z Base R N × N z Base A
38 1 24 2 25 17 26 matvsca2 x Base R z Base A x A z = N × N × x R f z
39 18 37 38 syl2anc N Fin R CRing x Base R y Base R N × N z Base R N × N x A z = N × N × x R f z
40 39 oveq2d N Fin R CRing x Base R y Base R N × N z Base R N × N y R maMul N N N x A z = y R maMul N N N N × N × x R f z
41 36 40 33 3eqtr4d N Fin R CRing x Base R y Base R N × N z Base R N × N y R maMul N N N x A z = x A y R maMul N N N z
42 3 4 5 6 8 11 13 14 34 41 isassad N Fin R CRing A AssAlg