Metamath Proof Explorer


Theorem mattposvs

Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses mattposvs.a A=NMatR
mattposvs.b B=BaseA
mattposvs.k K=BaseR
mattposvs.v ·˙=A
Assertion mattposvs XKYBtposX·˙Y=X·˙tposY

Proof

Step Hyp Ref Expression
1 mattposvs.a A=NMatR
2 mattposvs.b B=BaseA
3 mattposvs.k K=BaseR
4 mattposvs.v ·˙=A
5 1 2 matrcl YBNFinRV
6 5 simpld YBNFin
7 sqxpexg NFinN×NV
8 6 7 syl YBN×NV
9 snex XV
10 xpexg N×NVXVN×N×XV
11 8 9 10 sylancl YBN×N×XV
12 oftpos N×N×XVYBtposN×N×XRfY=tposN×N×XRftposY
13 11 12 mpancom YBtposN×N×XRfY=tposN×N×XRftposY
14 tposconst tposN×N×X=N×N×X
15 14 oveq1i tposN×N×XRftposY=N×N×XRftposY
16 13 15 eqtrdi YBtposN×N×XRfY=N×N×XRftposY
17 16 adantl XKYBtposN×N×XRfY=N×N×XRftposY
18 eqid R=R
19 eqid N×N=N×N
20 1 2 3 4 18 19 matvsca2 XKYBX·˙Y=N×N×XRfY
21 20 tposeqd XKYBtposX·˙Y=tposN×N×XRfY
22 1 2 mattposcl YBtposYB
23 1 2 3 4 18 19 matvsca2 XKtposYBX·˙tposY=N×N×XRftposY
24 22 23 sylan2 XKYBX·˙tposY=N×N×XRftposY
25 17 21 24 3eqtr4d XKYBtposX·˙Y=X·˙tposY