Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mbfconstlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass | |
|
2 | 1 | a1i | |
3 | cnvimarndm | |
|
4 | fconst6g | |
|
5 | 4 | adantl | |
6 | frn | |
|
7 | imass2 | |
|
8 | 5 6 7 | 3syl | |
9 | 3 8 | eqsstrrid | |
10 | 2 9 | eqssd | |
11 | fconstg | |
|
12 | 11 | ad2antlr | |
13 | 12 | fdmd | |
14 | 10 13 | eqtrd | |
15 | simpll | |
|
16 | 14 15 | eqeltrd | |
17 | 11 | ad2antlr | |
18 | incom | |
|
19 | simpr | |
|
20 | disjsn | |
|
21 | 19 20 | sylibr | |
22 | 18 21 | eqtrid | |
23 | fimacnvdisj | |
|
24 | 17 22 23 | syl2anc | |
25 | 0mbl | |
|
26 | 24 25 | eqeltrdi | |
27 | 16 26 | pm2.61dan | |