Metamath Proof Explorer


Theorem mbfconstlem

Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconstlem AdomvolCA×C-1Bdomvol

Proof

Step Hyp Ref Expression
1 cnvimass A×C-1BdomA×C
2 1 a1i AdomvolCCBA×C-1BdomA×C
3 cnvimarndm A×C-1ranA×C=domA×C
4 fconst6g CBA×C:AB
5 4 adantl AdomvolCCBA×C:AB
6 frn A×C:ABranA×CB
7 imass2 ranA×CBA×C-1ranA×CA×C-1B
8 5 6 7 3syl AdomvolCCBA×C-1ranA×CA×C-1B
9 3 8 eqsstrrid AdomvolCCBdomA×CA×C-1B
10 2 9 eqssd AdomvolCCBA×C-1B=domA×C
11 fconstg CA×C:AC
12 11 ad2antlr AdomvolCCBA×C:AC
13 12 fdmd AdomvolCCBdomA×C=A
14 10 13 eqtrd AdomvolCCBA×C-1B=A
15 simpll AdomvolCCBAdomvol
16 14 15 eqeltrd AdomvolCCBA×C-1Bdomvol
17 11 ad2antlr AdomvolC¬CBA×C:AC
18 incom CB=BC
19 simpr AdomvolC¬CB¬CB
20 disjsn BC=¬CB
21 19 20 sylibr AdomvolC¬CBBC=
22 18 21 eqtrid AdomvolC¬CBCB=
23 fimacnvdisj A×C:ACCB=A×C-1B=
24 17 22 23 syl2anc AdomvolC¬CBA×C-1B=
25 0mbl domvol
26 24 25 eqeltrdi AdomvolC¬CBA×C-1Bdomvol
27 16 26 pm2.61dan AdomvolCA×C-1Bdomvol