Metamath Proof Explorer


Theorem mdetr0

Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetr0.d D=NmaDetR
mdetr0.k K=BaseR
mdetr0.z 0˙=0R
mdetr0.r φRCRing
mdetr0.n φNFin
mdetr0.x φiNjNXK
mdetr0.i φIN
Assertion mdetr0 φDiN,jNifi=I0˙X=0˙

Proof

Step Hyp Ref Expression
1 mdetr0.d D=NmaDetR
2 mdetr0.k K=BaseR
3 mdetr0.z 0˙=0R
4 mdetr0.r φRCRing
5 mdetr0.n φNFin
6 mdetr0.x φiNjNXK
7 mdetr0.i φIN
8 eqid R=R
9 crngring RCRingRRing
10 4 9 syl φRRing
11 2 3 ring0cl RRing0˙K
12 10 11 syl φ0˙K
13 12 3ad2ant1 φiNjN0˙K
14 1 2 8 4 5 13 6 12 7 mdetrsca2 φDiN,jNifi=I0˙R0˙X=0˙RDiN,jNifi=I0˙X
15 2 8 3 ringlz RRing0˙K0˙R0˙=0˙
16 10 12 15 syl2anc φ0˙R0˙=0˙
17 16 ifeq1d φifi=I0˙R0˙X=ifi=I0˙X
18 17 mpoeq3dv φiN,jNifi=I0˙R0˙X=iN,jNifi=I0˙X
19 18 fveq2d φDiN,jNifi=I0˙R0˙X=DiN,jNifi=I0˙X
20 eqid NMatR=NMatR
21 eqid BaseNMatR=BaseNMatR
22 1 20 21 2 mdetf RCRingD:BaseNMatRK
23 4 22 syl φD:BaseNMatRK
24 13 6 ifcld φiNjNifi=I0˙XK
25 20 2 21 5 4 24 matbas2d φiN,jNifi=I0˙XBaseNMatR
26 23 25 ffvelcdmd φDiN,jNifi=I0˙XK
27 2 8 3 ringlz RRingDiN,jNifi=I0˙XK0˙RDiN,jNifi=I0˙X=0˙
28 10 26 27 syl2anc φ0˙RDiN,jNifi=I0˙X=0˙
29 14 19 28 3eqtr3d φDiN,jNifi=I0˙X=0˙