| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetralt2.d |  | 
						
							| 2 |  | mdetralt2.k |  | 
						
							| 3 |  | mdetralt2.z |  | 
						
							| 4 |  | mdetralt2.r |  | 
						
							| 5 |  | mdetralt2.n |  | 
						
							| 6 |  | mdetralt2.x |  | 
						
							| 7 |  | mdetralt2.y |  | 
						
							| 8 |  | mdetralt2.i |  | 
						
							| 9 |  | mdetralt2.j |  | 
						
							| 10 |  | mdetralt2.ij |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 6 | 3adant2 |  | 
						
							| 14 | 13 7 | ifcld |  | 
						
							| 15 | 13 14 | ifcld |  | 
						
							| 16 | 11 2 12 5 4 15 | matbas2d |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 |  | iftrue |  | 
						
							| 19 | 18 | ad2antrl |  | 
						
							| 20 |  | csbeq1a |  | 
						
							| 21 | 20 | ad2antll |  | 
						
							| 22 | 19 21 | eqtrd |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 | 8 | adantr |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 |  | nfv |  | 
						
							| 27 |  | nfcsb1v |  | 
						
							| 28 | 27 | nfel1 |  | 
						
							| 29 | 26 28 | nfim |  | 
						
							| 30 |  | eleq1w |  | 
						
							| 31 | 30 | anbi2d |  | 
						
							| 32 | 20 | eleq1d |  | 
						
							| 33 | 31 32 | imbi12d |  | 
						
							| 34 | 29 33 6 | chvarfv |  | 
						
							| 35 |  | nfv |  | 
						
							| 36 |  | nfcv |  | 
						
							| 37 |  | nfcv |  | 
						
							| 38 |  | nfcv |  | 
						
							| 39 | 17 22 23 24 25 34 35 26 36 37 38 27 | ovmpodxf |  | 
						
							| 40 |  | iftrue |  | 
						
							| 41 | 40 | ifeq2d |  | 
						
							| 42 |  | ifid |  | 
						
							| 43 | 41 42 | eqtrdi |  | 
						
							| 44 | 43 | ad2antrl |  | 
						
							| 45 | 20 | ad2antll |  | 
						
							| 46 | 44 45 | eqtrd |  | 
						
							| 47 |  | eqidd |  | 
						
							| 48 | 9 | adantr |  | 
						
							| 49 |  | nfcv |  | 
						
							| 50 | 17 46 47 48 25 34 35 26 49 37 38 27 | ovmpodxf |  | 
						
							| 51 | 39 50 | eqtr4d |  | 
						
							| 52 | 51 | ralrimiva |  | 
						
							| 53 | 1 11 12 3 4 16 8 9 10 52 | mdetralt |  |