Metamath Proof Explorer


Theorem mdetralt2

Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetralt2.d D=NmaDetR
mdetralt2.k K=BaseR
mdetralt2.z 0˙=0R
mdetralt2.r φRCRing
mdetralt2.n φNFin
mdetralt2.x φjNXK
mdetralt2.y φiNjNYK
mdetralt2.i φIN
mdetralt2.j φJN
mdetralt2.ij φIJ
Assertion mdetralt2 φDiN,jNifi=IXifi=JXY=0˙

Proof

Step Hyp Ref Expression
1 mdetralt2.d D=NmaDetR
2 mdetralt2.k K=BaseR
3 mdetralt2.z 0˙=0R
4 mdetralt2.r φRCRing
5 mdetralt2.n φNFin
6 mdetralt2.x φjNXK
7 mdetralt2.y φiNjNYK
8 mdetralt2.i φIN
9 mdetralt2.j φJN
10 mdetralt2.ij φIJ
11 eqid NMatR=NMatR
12 eqid BaseNMatR=BaseNMatR
13 6 3adant2 φiNjNXK
14 13 7 ifcld φiNjNifi=JXYK
15 13 14 ifcld φiNjNifi=IXifi=JXYK
16 11 2 12 5 4 15 matbas2d φiN,jNifi=IXifi=JXYBaseNMatR
17 eqidd φwNiN,jNifi=IXifi=JXY=iN,jNifi=IXifi=JXY
18 iftrue i=Iifi=IXifi=JXY=X
19 18 ad2antrl φwNi=Ij=wifi=IXifi=JXY=X
20 csbeq1a j=wX=w/jX
21 20 ad2antll φwNi=Ij=wX=w/jX
22 19 21 eqtrd φwNi=Ij=wifi=IXifi=JXY=w/jX
23 eqidd φwNi=IN=N
24 8 adantr φwNIN
25 simpr φwNwN
26 nfv jφwN
27 nfcsb1v _jw/jX
28 27 nfel1 jw/jXK
29 26 28 nfim jφwNw/jXK
30 eleq1w j=wjNwN
31 30 anbi2d j=wφjNφwN
32 20 eleq1d j=wXKw/jXK
33 31 32 imbi12d j=wφjNXKφwNw/jXK
34 29 33 6 chvarfv φwNw/jXK
35 nfv iφwN
36 nfcv _jI
37 nfcv _iw
38 nfcv _iw/jX
39 17 22 23 24 25 34 35 26 36 37 38 27 ovmpodxf φwNIiN,jNifi=IXifi=JXYw=w/jX
40 iftrue i=Jifi=JXY=X
41 40 ifeq2d i=Jifi=IXifi=JXY=ifi=IXX
42 ifid ifi=IXX=X
43 41 42 eqtrdi i=Jifi=IXifi=JXY=X
44 43 ad2antrl φwNi=Jj=wifi=IXifi=JXY=X
45 20 ad2antll φwNi=Jj=wX=w/jX
46 44 45 eqtrd φwNi=Jj=wifi=IXifi=JXY=w/jX
47 eqidd φwNi=JN=N
48 9 adantr φwNJN
49 nfcv _jJ
50 17 46 47 48 25 34 35 26 49 37 38 27 ovmpodxf φwNJiN,jNifi=IXifi=JXYw=w/jX
51 39 50 eqtr4d φwNIiN,jNifi=IXifi=JXYw=JiN,jNifi=IXifi=JXYw
52 51 ralrimiva φwNIiN,jNifi=IXifi=JXYw=JiN,jNifi=IXifi=JXYw
53 1 11 12 3 4 16 8 9 10 52 mdetralt φDiN,jNifi=IXifi=JXY=0˙