Metamath Proof Explorer


Theorem mdslle2i

Description: Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 AC
mdslle1.2 BC
mdslle1.3 CC
mdslle1.4 DC
Assertion mdslle2i A𝑀BABCDCDBCDCADA

Proof

Step Hyp Ref Expression
1 mdslle1.1 AC
2 mdslle1.2 BC
3 mdslle1.3 CC
4 mdslle1.4 DC
5 3 4 1 chlej1i CDCADA
6 ssrin CADACABDAB
7 id A𝑀BA𝑀B
8 ssin ABCABDABCD
9 8 bicomi ABCDABCABD
10 9 simplbi ABCDABC
11 3 4 2 chlubi CBDBCDB
12 11 bicomi CDBCBDB
13 12 simplbi CDBCB
14 1 2 3 3pm3.2i ACBCCC
15 mdsl3 ACBCCCA𝑀BABCCBCAB=C
16 14 15 mpan A𝑀BABCCBCAB=C
17 7 10 13 16 syl3an A𝑀BABCDCDBCAB=C
18 9 simprbi ABCDABD
19 12 simprbi CDBDB
20 1 2 4 3pm3.2i ACBCDC
21 mdsl3 ACBCDCA𝑀BABDDBDAB=D
22 20 21 mpan A𝑀BABDDBDAB=D
23 7 18 19 22 syl3an A𝑀BABCDCDBDAB=D
24 17 23 sseq12d A𝑀BABCDCDBCABDABCD
25 6 24 imbitrid A𝑀BABCDCDBCADACD
26 5 25 impbid2 A𝑀BABCDCDBCDCADA