Metamath Proof Explorer


Theorem mdslmd1i

Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2 (meet version). (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 AC
mdslmd.2 BC
mdslmd.3 CC
mdslmd.4 DC
Assertion mdslmd1i A𝑀BB𝑀*AACDCDABC𝑀DCB𝑀DB

Proof

Step Hyp Ref Expression
1 mdslmd.1 AC
2 mdslmd.2 BC
3 mdslmd.3 CC
4 mdslmd.4 DC
5 ssin ACADACD
6 1 2 chjcli ABC
7 3 4 6 chlubi CABDABCDAB
8 5 7 anbi12i ACADCABDABACDCDAB
9 chjcl xCACxAC
10 1 9 mpan2 xCxAC
11 sseq1 y=xAyDxAD
12 oveq1 y=xAyC=xAC
13 12 ineq1d y=xAyCD=xACD
14 oveq1 y=xAyCD=xACD
15 13 14 sseq12d y=xAyCDyCDxACDxACD
16 11 15 imbi12d y=xAyDyCDyCDxADxACDxACD
17 16 rspcv xACyCyDyCDyCDxADxACDxACD
18 10 17 syl xCyCyDyCDyCDxADxACDxACD
19 18 adantr xCA𝑀BB𝑀*AACADCABDAByCyDyCDyCDxADxACDxACD
20 1 2 3 4 mdslmd1lem3 xCA𝑀BB𝑀*AACADCABDABxADxACDxACDCBDBxxDBxCBDBxCBDB
21 19 20 syld xCA𝑀BB𝑀*AACADCABDAByCyDyCDyCDCBDBxxDBxCBDBxCBDB
22 21 ex xCA𝑀BB𝑀*AACADCABDAByCyDyCDyCDCBDBxxDBxCBDBxCBDB
23 22 com3l A𝑀BB𝑀*AACADCABDAByCyDyCDyCDxCCBDBxxDBxCBDBxCBDB
24 23 ralrimdv A𝑀BB𝑀*AACADCABDAByCyDyCDyCDxCCBDBxxDBxCBDBxCBDB
25 mdbr2 CCDCC𝑀DyCyDyCDyCD
26 3 4 25 mp2an C𝑀DyCyDyCDyCD
27 3 2 chincli CBC
28 4 2 chincli DBC
29 27 28 mdsl2i CB𝑀DBxCCBDBxxDBxCBDBxCBDB
30 24 26 29 3imtr4g A𝑀BB𝑀*AACADCABDABC𝑀DCB𝑀DB
31 chincl xCBCxBC
32 2 31 mpan2 xCxBC
33 sseq1 y=xByDBxBDB
34 oveq1 y=xByCB=xBCB
35 34 ineq1d y=xByCBDB=xBCBDB
36 oveq1 y=xByCBDB=xBCBDB
37 35 36 sseq12d y=xByCBDByCBDBxBCBDBxBCBDB
38 33 37 imbi12d y=xByDByCBDByCBDBxBDBxBCBDBxBCBDB
39 38 rspcv xBCyCyDByCBDByCBDBxBDBxBCBDBxBCBDB
40 32 39 syl xCyCyDByCBDByCBDBxBDBxBCBDBxBCBDB
41 40 adantr xCA𝑀BB𝑀*AACADCABDAByCyDByCBDByCBDBxBDBxBCBDBxBCBDB
42 1 2 3 4 mdslmd1lem4 xCA𝑀BB𝑀*AACADCABDABxBDBxBCBDBxBCBDBCDxxDxCDxCD
43 41 42 syld xCA𝑀BB𝑀*AACADCABDAByCyDByCBDByCBDBCDxxDxCDxCD
44 43 ex xCA𝑀BB𝑀*AACADCABDAByCyDByCBDByCBDBCDxxDxCDxCD
45 44 com3l A𝑀BB𝑀*AACADCABDAByCyDByCBDByCBDBxCCDxxDxCDxCD
46 45 ralrimdv A𝑀BB𝑀*AACADCABDAByCyDByCBDByCBDBxCCDxxDxCDxCD
47 mdbr2 CBCDBCCB𝑀DByCyDByCBDByCBDB
48 27 28 47 mp2an CB𝑀DByCyDByCBDByCBDB
49 3 4 mdsl2i C𝑀DxCCDxxDxCDxCD
50 46 48 49 3imtr4g A𝑀BB𝑀*AACADCABDABCB𝑀DBC𝑀D
51 30 50 impbid A𝑀BB𝑀*AACADCABDABC𝑀DCB𝑀DB
52 8 51 sylan2br A𝑀BB𝑀*AACDCDABC𝑀DCB𝑀DB