| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
|
| 2 |
|
mdslmd.2 |
|
| 3 |
|
mdslmd.3 |
|
| 4 |
|
mdslmd.4 |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
sseq1d |
|
| 7 |
5
|
oveq1d |
|
| 8 |
7
|
ineq1d |
|
| 9 |
5
|
oveq1d |
|
| 10 |
8 9
|
sseq12d |
|
| 11 |
6 10
|
imbi12d |
|
| 12 |
|
sseq2 |
|
| 13 |
|
sseq1 |
|
| 14 |
12 13
|
anbi12d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
ineq1d |
|
| 17 |
|
oveq1 |
|
| 18 |
16 17
|
sseq12d |
|
| 19 |
14 18
|
imbi12d |
|
| 20 |
11 19
|
imbi12d |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
h0elch |
|
| 23 |
22
|
elimel |
|
| 24 |
1 2 3 4 23
|
mdslmd1lem1 |
|
| 25 |
21 24
|
dedth |
|
| 26 |
25
|
imp |
|