Metamath Proof Explorer


Theorem meassre

Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meassre.m φMMeas
meassre.a φAdomM
meassre.r φMA
meassre.s φBA
meassre.b φBdomM
Assertion meassre φMB

Proof

Step Hyp Ref Expression
1 meassre.m φMMeas
2 meassre.a φAdomM
3 meassre.r φMA
4 meassre.s φBA
5 meassre.b φBdomM
6 rge0ssre 0+∞
7 0xr 0*
8 7 a1i φ0*
9 pnfxr +∞*
10 9 a1i φ+∞*
11 eqid domM=domM
12 1 11 5 meaxrcl φMB*
13 1 5 meage0 φ0MB
14 3 rexrd φMA*
15 1 11 5 2 4 meassle φMBMA
16 3 ltpnfd φMA<+∞
17 12 14 10 15 16 xrlelttrd φMB<+∞
18 8 10 12 13 17 elicod φMB0+∞
19 6 18 sselid φMB