Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | meassre.m | |
|
meassre.a | |
||
meassre.r | |
||
meassre.s | |
||
meassre.b | |
||
Assertion | meassre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meassre.m | |
|
2 | meassre.a | |
|
3 | meassre.r | |
|
4 | meassre.s | |
|
5 | meassre.b | |
|
6 | rge0ssre | |
|
7 | 0xr | |
|
8 | 7 | a1i | |
9 | pnfxr | |
|
10 | 9 | a1i | |
11 | eqid | |
|
12 | 1 11 5 | meaxrcl | |
13 | 1 5 | meage0 | |
14 | 3 | rexrd | |
15 | 1 11 5 2 4 | meassle | |
16 | 3 | ltpnfd | |
17 | 12 14 10 15 16 | xrlelttrd | |
18 | 8 10 12 13 17 | elicod | |
19 | 6 18 | sselid | |