Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mendplusgfval.a | |
|
mendplusgfval.b | |
||
mendplusgfval.p | |
||
Assertion | mendplusgfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mendplusgfval.a | |
|
2 | mendplusgfval.b | |
|
3 | mendplusgfval.p | |
|
4 | 1 | mendbas | |
5 | 2 4 | eqtr4i | |
6 | ofeq | |
|
7 | 3 6 | ax-mp | |
8 | 7 | oveqi | |
9 | 8 | a1i | |
10 | 9 | mpoeq3ia | |
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 5 10 11 12 13 | mendval | |
15 | 1 14 | eqtrid | |
16 | 15 | fveq2d | |
17 | 2 | fvexi | |
18 | 17 17 | mpoex | |
19 | eqid | |
|
20 | 19 | algaddg | |
21 | 18 20 | mp1i | |
22 | 16 21 | eqtr4d | |
23 | fvprc | |
|
24 | 1 23 | eqtrid | |
25 | 24 | fveq2d | |
26 | plusgid | |
|
27 | 26 | str0 | |
28 | 25 27 | eqtr4di | |
29 | 24 | fveq2d | |
30 | base0 | |
|
31 | 29 2 30 | 3eqtr4g | |
32 | 31 | olcd | |
33 | 0mpo0 | |
|
34 | 32 33 | syl | |
35 | 28 34 | eqtr4d | |
36 | 22 35 | pm2.61i | |