Metamath Proof Explorer


Theorem mendplusgfval

Description: Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendplusgfval.a A=MEndoM
mendplusgfval.b B=BaseA
mendplusgfval.p +˙=+M
Assertion mendplusgfval +A=xB,yBx+˙fy

Proof

Step Hyp Ref Expression
1 mendplusgfval.a A=MEndoM
2 mendplusgfval.b B=BaseA
3 mendplusgfval.p +˙=+M
4 1 mendbas MLMHomM=BaseA
5 2 4 eqtr4i B=MLMHomM
6 ofeq +˙=+Mf+˙=f+M
7 3 6 ax-mp f+˙=f+M
8 7 oveqi x+˙fy=x+Mfy
9 8 a1i xByBx+˙fy=x+Mfy
10 9 mpoeq3ia xB,yBx+˙fy=xB,yBx+Mfy
11 eqid xB,yBxy=xB,yBxy
12 eqid ScalarM=ScalarM
13 eqid xBaseScalarM,yBBaseM×xMfy=xBaseScalarM,yBBaseM×xMfy
14 5 10 11 12 13 mendval MVMEndoM=BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
15 1 14 eqtrid MVA=BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
16 15 fveq2d MV+A=+BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
17 2 fvexi BV
18 17 17 mpoex xB,yBx+˙fyV
19 eqid BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy=BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
20 19 algaddg xB,yBx+˙fyVxB,yBx+˙fy=+BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
21 18 20 mp1i MVxB,yBx+˙fy=+BasendxB+ndxxB,yBx+˙fyndxxB,yBxyScalarndxScalarMndxxBaseScalarM,yBBaseM×xMfy
22 16 21 eqtr4d MV+A=xB,yBx+˙fy
23 fvprc ¬MVMEndoM=
24 1 23 eqtrid ¬MVA=
25 24 fveq2d ¬MV+A=+
26 plusgid +𝑔=Slot+ndx
27 26 str0 =+
28 25 27 eqtr4di ¬MV+A=
29 24 fveq2d ¬MVBaseA=Base
30 base0 =Base
31 29 2 30 3eqtr4g ¬MVB=
32 31 olcd ¬MVB=B=
33 0mpo0 B=B=xB,yBx+˙fy=
34 32 33 syl ¬MVxB,yBx+˙fy=
35 28 34 eqtr4d ¬MV+A=xB,yBx+˙fy
36 22 35 pm2.61i +A=xB,yBx+˙fy