Metamath Proof Explorer


Theorem mendvscafval

Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendvscafval.a A=MEndoM
mendvscafval.v ·˙=M
mendvscafval.b B=BaseA
mendvscafval.s S=ScalarM
mendvscafval.k K=BaseS
mendvscafval.e E=BaseM
Assertion mendvscafval A=xK,yBE×x·˙fy

Proof

Step Hyp Ref Expression
1 mendvscafval.a A=MEndoM
2 mendvscafval.v ·˙=M
3 mendvscafval.b B=BaseA
4 mendvscafval.s S=ScalarM
5 mendvscafval.k K=BaseS
6 mendvscafval.e E=BaseM
7 1 fveq2i A=MEndoM
8 1 mendbas MLMHomM=BaseA
9 3 8 eqtr4i B=MLMHomM
10 eqid xB,yBx+Mfy=xB,yBx+Mfy
11 eqid xB,yBxy=xB,yBxy
12 eqid B=B
13 6 xpeq1i E×x=BaseM×x
14 eqid y=y
15 ofeq ·˙=Mf·˙=fM
16 2 15 ax-mp f·˙=fM
17 13 14 16 oveq123i E×x·˙fy=BaseM×xMfy
18 5 12 17 mpoeq123i xK,yBE×x·˙fy=xBaseS,yBBaseM×xMfy
19 9 10 11 4 18 mendval MVMEndoM=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy
20 19 fveq2d MVMEndoM=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy
21 5 fvexi KV
22 3 fvexi BV
23 21 22 mpoex xK,yBE×x·˙fyV
24 eqid BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy
25 24 algvsca xK,yBE×x·˙fyVxK,yBE×x·˙fy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy
26 23 25 mp1i MVxK,yBE×x·˙fy=BasendxB+ndxxB,yBx+MfyndxxB,yBxyScalarndxSndxxK,yBE×x·˙fy
27 20 26 eqtr4d MVMEndoM=xK,yBE×x·˙fy
28 fvprc ¬MVMEndoM=
29 28 fveq2d ¬MVMEndoM=
30 vscaid 𝑠=Slotndx
31 30 str0 =
32 29 31 eqtr4di ¬MVMEndoM=
33 fvprc ¬MVScalarM=
34 4 33 eqtrid ¬MVS=
35 34 fveq2d ¬MVBaseS=Base
36 base0 =Base
37 35 5 36 3eqtr4g ¬MVK=
38 37 orcd ¬MVK=B=
39 0mpo0 K=B=xK,yBE×x·˙fy=
40 38 39 syl ¬MVxK,yBE×x·˙fy=
41 32 40 eqtr4d ¬MVMEndoM=xK,yBE×x·˙fy
42 27 41 pm2.61i MEndoM=xK,yBE×x·˙fy
43 7 42 eqtri A=xK,yBE×x·˙fy