Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mendvscafval.a | |
|
mendvscafval.v | |
||
mendvscafval.b | |
||
mendvscafval.s | |
||
mendvscafval.k | |
||
mendvscafval.e | |
||
Assertion | mendvscafval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mendvscafval.a | |
|
2 | mendvscafval.v | |
|
3 | mendvscafval.b | |
|
4 | mendvscafval.s | |
|
5 | mendvscafval.k | |
|
6 | mendvscafval.e | |
|
7 | 1 | fveq2i | |
8 | 1 | mendbas | |
9 | 3 8 | eqtr4i | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 6 | xpeq1i | |
14 | eqid | |
|
15 | ofeq | |
|
16 | 2 15 | ax-mp | |
17 | 13 14 16 | oveq123i | |
18 | 5 12 17 | mpoeq123i | |
19 | 9 10 11 4 18 | mendval | |
20 | 19 | fveq2d | |
21 | 5 | fvexi | |
22 | 3 | fvexi | |
23 | 21 22 | mpoex | |
24 | eqid | |
|
25 | 24 | algvsca | |
26 | 23 25 | mp1i | |
27 | 20 26 | eqtr4d | |
28 | fvprc | |
|
29 | 28 | fveq2d | |
30 | vscaid | |
|
31 | 30 | str0 | |
32 | 29 31 | eqtr4di | |
33 | fvprc | |
|
34 | 4 33 | eqtrid | |
35 | 34 | fveq2d | |
36 | base0 | |
|
37 | 35 5 36 | 3eqtr4g | |
38 | 37 | orcd | |
39 | 0mpo0 | |
|
40 | 38 39 | syl | |
41 | 32 40 | eqtr4d | |
42 | 27 41 | pm2.61i | |
43 | 7 42 | eqtri | |