Metamath Proof Explorer


Theorem metakunt26

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt26.1 φM
metakunt26.2 φI
metakunt26.3 φIM
metakunt26.4 A=x1Mifx=IMifx<Ixx1
metakunt26.5 C=y1Mify=MIify<Iyy+1
metakunt26.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt26.7 φX=I
Assertion metakunt26 φCBAX=X

Proof

Step Hyp Ref Expression
1 metakunt26.1 φM
2 metakunt26.2 φI
3 metakunt26.3 φIM
4 metakunt26.4 A=x1Mifx=IMifx<Ixx1
5 metakunt26.5 C=y1Mify=MIify<Iyy+1
6 metakunt26.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt26.7 φX=I
8 4 a1i φA=x1Mifx=IMifx<Ixx1
9 7 eqeq2d φx=Xx=I
10 simpr φx=Ix=I
11 10 iftrued φx=Iifx=IMifx<Ixx1=M
12 11 ex φx=Iifx=IMifx<Ixx1=M
13 9 12 sylbid φx=Xifx=IMifx<Ixx1=M
14 13 imp φx=Xifx=IMifx<Ixx1=M
15 1zzd φ1
16 nnz MM
17 1 16 syl φM
18 2 nnzd φI
19 2 nnge1d φ1I
20 15 17 18 19 3 elfzd φI1M
21 7 eleq1d φX1MI1M
22 20 21 mpbird φX1M
23 8 14 22 1 fvmptd φAX=M
24 23 fveq2d φBAX=BM
25 6 a1i φB=z1Mifz=MMifz<Iz+M-Iz+1-I
26 simpr φz=Mz=M
27 26 iftrued φz=Mifz=MMifz<Iz+M-Iz+1-I=M
28 1zzd M1
29 nnge1 M1M
30 nnre MM
31 30 leidd MMM
32 28 16 16 29 31 elfzd MM1M
33 1 32 syl φM1M
34 25 27 33 1 fvmptd φBM=M
35 24 34 eqtrd φBAX=M
36 35 fveq2d φCBAX=CM
37 5 a1i φC=y1Mify=MIify<Iyy+1
38 simpr φy=My=M
39 38 iftrued φy=Mify=MIify<Iyy+1=I
40 37 39 33 2 fvmptd φCM=I
41 36 40 eqtrd φCBAX=I
42 7 eqcomd φI=X
43 41 42 eqtrd φCBAX=X