Metamath Proof Explorer


Theorem mgccnv

Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgccnv.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgccnv.2 No typesetting found for |- M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) with typecode |-
Assertion mgccnv VProsetWProsetFHGGMF

Proof

Step Hyp Ref Expression
1 mgccnv.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgccnv.2 Could not format M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) : No typesetting found for |- M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) with typecode |-
3 ancom F:BaseVBaseWG:BaseWBaseVG:BaseWBaseVF:BaseVBaseW
4 3 a1i VProsetWProsetF:BaseVBaseWG:BaseWBaseVG:BaseWBaseVF:BaseVBaseW
5 ralcom xBaseVyBaseWFxWyxVGyyBaseWxBaseVFxWyxVGy
6 bicom FxWyxVGyxVGyFxWy
7 fvex GyV
8 vex xV
9 7 8 brcnv GyV-1xxVGy
10 9 bicomi xVGyGyV-1x
11 10 a1i VProsetWProsetyBaseWxBaseVxVGyGyV-1x
12 vex yV
13 fvex FxV
14 12 13 brcnv yW-1FxFxWy
15 14 bicomi FxWyyW-1Fx
16 15 a1i VProsetWProsetyBaseWxBaseVFxWyyW-1Fx
17 11 16 bibi12d VProsetWProsetyBaseWxBaseVxVGyFxWyGyV-1xyW-1Fx
18 6 17 bitrid VProsetWProsetyBaseWxBaseVFxWyxVGyGyV-1xyW-1Fx
19 18 ralbidva VProsetWProsetyBaseWxBaseVFxWyxVGyxBaseVGyV-1xyW-1Fx
20 19 ralbidva VProsetWProsetyBaseWxBaseVFxWyxVGyyBaseWxBaseVGyV-1xyW-1Fx
21 5 20 bitrid VProsetWProsetxBaseVyBaseWFxWyxVGyyBaseWxBaseVGyV-1xyW-1Fx
22 4 21 anbi12d VProsetWProsetF:BaseVBaseWG:BaseWBaseVxBaseVyBaseWFxWyxVGyG:BaseWBaseVF:BaseVBaseWyBaseWxBaseVGyV-1xyW-1Fx
23 eqid BaseV=BaseV
24 eqid BaseW=BaseW
25 eqid V=V
26 eqid W=W
27 simpl VProsetWProsetVProset
28 simpr VProsetWProsetWProset
29 23 24 25 26 1 27 28 mgcval VProsetWProsetFHGF:BaseVBaseWG:BaseWBaseVxBaseVyBaseWFxWyxVGy
30 eqid ODualW=ODualW
31 30 24 odubas BaseW=BaseODualW
32 eqid ODualV=ODualV
33 32 23 odubas BaseV=BaseODualV
34 30 26 oduleval W-1=ODualW
35 32 25 oduleval V-1=ODualV
36 30 oduprs WProsetODualWProset
37 28 36 syl VProsetWProsetODualWProset
38 32 oduprs VProsetODualVProset
39 27 38 syl VProsetWProsetODualVProset
40 31 33 34 35 2 37 39 mgcval VProsetWProsetGMFG:BaseWBaseVF:BaseVBaseWyBaseWxBaseVGyV-1xyW-1Fx
41 22 29 40 3bitr4d VProsetWProsetFHGGMF