Description: The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgccnv.1 | No typesetting found for |- H = ( V MGalConn W ) with typecode |- | |
mgccnv.2 | No typesetting found for |- M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) with typecode |- | ||
Assertion | mgccnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgccnv.1 | Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |- | |
2 | mgccnv.2 | Could not format M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) : No typesetting found for |- M = ( ( ODual ` W ) MGalConn ( ODual ` V ) ) with typecode |- | |
3 | ancom | |
|
4 | 3 | a1i | |
5 | ralcom | |
|
6 | bicom | |
|
7 | fvex | |
|
8 | vex | |
|
9 | 7 8 | brcnv | |
10 | 9 | bicomi | |
11 | 10 | a1i | |
12 | vex | |
|
13 | fvex | |
|
14 | 12 13 | brcnv | |
15 | 14 | bicomi | |
16 | 15 | a1i | |
17 | 11 16 | bibi12d | |
18 | 6 17 | bitrid | |
19 | 18 | ralbidva | |
20 | 19 | ralbidva | |
21 | 5 20 | bitrid | |
22 | 4 21 | anbi12d | |
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | simpl | |
|
28 | simpr | |
|
29 | 23 24 25 26 1 27 28 | mgcval | |
30 | eqid | |
|
31 | 30 24 | odubas | |
32 | eqid | |
|
33 | 32 23 | odubas | |
34 | 30 26 | oduleval | |
35 | 32 25 | oduleval | |
36 | 30 | oduprs | |
37 | 28 36 | syl | |
38 | 32 | oduprs | |
39 | 27 38 | syl | |
40 | 31 33 34 35 2 37 39 | mgcval | |
41 | 22 29 40 | 3bitr4d | |