Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmhmeotmd.m | |
|
mhmhmeotmd.h | |
||
mhmhmeotmd.t | |
||
mhmhmeotmd.s | |
||
Assertion | mhmhmeotmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmhmeotmd.m | |
|
2 | mhmhmeotmd.h | |
|
3 | mhmhmeotmd.t | |
|
4 | mhmhmeotmd.s | |
|
5 | mhmrcl2 | |
|
6 | 1 5 | ax-mp | |
7 | mhmrcl1 | |
|
8 | 1 7 | ax-mp | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | mndplusf | |
12 | 8 11 | ax-mp | |
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | mndplusf | |
16 | 6 15 | ax-mp | |
17 | eqid | |
|
18 | 17 9 | tmdtopon | |
19 | 3 18 | ax-mp | |
20 | eqid | |
|
21 | 13 20 | istps | |
22 | 4 21 | mpbi | |
23 | eqid | |
|
24 | eqid | |
|
25 | 9 23 24 | mhmlin | |
26 | 1 25 | mp3an1 | |
27 | 9 23 10 | plusfval | |
28 | 27 | fveq2d | |
29 | 9 13 | mhmf | |
30 | 1 29 | ax-mp | |
31 | 30 | ffvelcdmi | |
32 | 30 | ffvelcdmi | |
33 | 13 24 14 | plusfval | |
34 | 31 32 33 | syl2an | |
35 | 26 28 34 | 3eqtr4d | |
36 | 17 10 | tmdcn | |
37 | 3 36 | ax-mp | |
38 | 2 12 16 19 22 35 37 | mndpluscn | |
39 | 14 20 | istmd | |
40 | 6 4 38 39 | mpbir3an | |