Metamath Proof Explorer


Theorem mhmhmeotmd

Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)

Ref Expression
Hypotheses mhmhmeotmd.m FSMndHomT
mhmhmeotmd.h FTopOpenSHomeoTopOpenT
mhmhmeotmd.t STopMnd
mhmhmeotmd.s TTopSp
Assertion mhmhmeotmd TTopMnd

Proof

Step Hyp Ref Expression
1 mhmhmeotmd.m FSMndHomT
2 mhmhmeotmd.h FTopOpenSHomeoTopOpenT
3 mhmhmeotmd.t STopMnd
4 mhmhmeotmd.s TTopSp
5 mhmrcl2 FSMndHomTTMnd
6 1 5 ax-mp TMnd
7 mhmrcl1 FSMndHomTSMnd
8 1 7 ax-mp SMnd
9 eqid BaseS=BaseS
10 eqid +𝑓S=+𝑓S
11 9 10 mndplusf SMnd+𝑓S:BaseS×BaseSBaseS
12 8 11 ax-mp +𝑓S:BaseS×BaseSBaseS
13 eqid BaseT=BaseT
14 eqid +𝑓T=+𝑓T
15 13 14 mndplusf TMnd+𝑓T:BaseT×BaseTBaseT
16 6 15 ax-mp +𝑓T:BaseT×BaseTBaseT
17 eqid TopOpenS=TopOpenS
18 17 9 tmdtopon STopMndTopOpenSTopOnBaseS
19 3 18 ax-mp TopOpenSTopOnBaseS
20 eqid TopOpenT=TopOpenT
21 13 20 istps TTopSpTopOpenTTopOnBaseT
22 4 21 mpbi TopOpenTTopOnBaseT
23 eqid +S=+S
24 eqid +T=+T
25 9 23 24 mhmlin FSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
26 1 25 mp3an1 xBaseSyBaseSFx+Sy=Fx+TFy
27 9 23 10 plusfval xBaseSyBaseSx+𝑓Sy=x+Sy
28 27 fveq2d xBaseSyBaseSFx+𝑓Sy=Fx+Sy
29 9 13 mhmf FSMndHomTF:BaseSBaseT
30 1 29 ax-mp F:BaseSBaseT
31 30 ffvelcdmi xBaseSFxBaseT
32 30 ffvelcdmi yBaseSFyBaseT
33 13 24 14 plusfval FxBaseTFyBaseTFx+𝑓TFy=Fx+TFy
34 31 32 33 syl2an xBaseSyBaseSFx+𝑓TFy=Fx+TFy
35 26 28 34 3eqtr4d xBaseSyBaseSFx+𝑓Sy=Fx+𝑓TFy
36 17 10 tmdcn STopMnd+𝑓STopOpenS×tTopOpenSCnTopOpenS
37 3 36 ax-mp +𝑓STopOpenS×tTopOpenSCnTopOpenS
38 2 12 16 19 22 35 37 mndpluscn +𝑓TTopOpenT×tTopOpenTCnTopOpenT
39 14 20 istmd TTopMndTMndTTopSp+𝑓TTopOpenT×tTopOpenTCnTopOpenT
40 6 4 38 39 mpbir3an TTopMnd