Metamath Proof Explorer


Theorem mhmimalem

Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)

Ref Expression
Hypotheses mhmimalem.f φFMMndHomN
mhmimalem.s φXBaseM
mhmimalem.a φ˙=+M
mhmimalem.p φ+˙=+N
mhmimalem.c φzXxXz˙xX
Assertion mhmimalem φxFXyFXx+˙yFX

Proof

Step Hyp Ref Expression
1 mhmimalem.f φFMMndHomN
2 mhmimalem.s φXBaseM
3 mhmimalem.a φ˙=+M
4 mhmimalem.p φ+˙=+N
5 mhmimalem.c φzXxXz˙xX
6 1 adantr φzXxXFMMndHomN
7 2 adantr φzXxXXBaseM
8 simprl φzXxXzX
9 7 8 sseldd φzXxXzBaseM
10 simprr φzXxXxX
11 7 10 sseldd φzXxXxBaseM
12 eqid BaseM=BaseM
13 eqid +M=+M
14 eqid +N=+N
15 12 13 14 mhmlin FMMndHomNzBaseMxBaseMFz+Mx=Fz+NFx
16 6 9 11 15 syl3anc φzXxXFz+Mx=Fz+NFx
17 3 oveqd φz˙x=z+Mx
18 17 fveq2d φFz˙x=Fz+Mx
19 4 oveqd φFz+˙Fx=Fz+NFx
20 18 19 eqeq12d φFz˙x=Fz+˙FxFz+Mx=Fz+NFx
21 20 adantr φzXxXFz˙x=Fz+˙FxFz+Mx=Fz+NFx
22 16 21 mpbird φzXxXFz˙x=Fz+˙Fx
23 eqid BaseN=BaseN
24 12 23 mhmf FMMndHomNF:BaseMBaseN
25 1 24 syl φF:BaseMBaseN
26 25 ffnd φFFnBaseM
27 26 adantr φzXxXFFnBaseM
28 5 3expb φzXxXz˙xX
29 fnfvima FFnBaseMXBaseMz˙xXFz˙xFX
30 27 7 28 29 syl3anc φzXxXFz˙xFX
31 22 30 eqeltrrd φzXxXFz+˙FxFX
32 31 anassrs φzXxXFz+˙FxFX
33 32 ralrimiva φzXxXFz+˙FxFX
34 oveq2 y=FxFz+˙y=Fz+˙Fx
35 34 eleq1d y=FxFz+˙yFXFz+˙FxFX
36 35 ralima FFnBaseMXBaseMyFXFz+˙yFXxXFz+˙FxFX
37 26 2 36 syl2anc φyFXFz+˙yFXxXFz+˙FxFX
38 37 adantr φzXyFXFz+˙yFXxXFz+˙FxFX
39 33 38 mpbird φzXyFXFz+˙yFX
40 39 ralrimiva φzXyFXFz+˙yFX
41 oveq1 x=Fzx+˙y=Fz+˙y
42 41 eleq1d x=Fzx+˙yFXFz+˙yFX
43 42 ralbidv x=FzyFXx+˙yFXyFXFz+˙yFX
44 43 ralima FFnBaseMXBaseMxFXyFXx+˙yFXzXyFXFz+˙yFX
45 26 2 44 syl2anc φxFXyFXx+˙yFXzXyFXFz+˙yFX
46 40 45 mpbird φxFXyFXx+˙yFX