Description: Lemma for mhmima and similar theorems, formerly part of proof for mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmimalem.f | |
|
mhmimalem.s | |
||
mhmimalem.a | |
||
mhmimalem.p | |
||
mhmimalem.c | |
||
Assertion | mhmimalem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmimalem.f | |
|
2 | mhmimalem.s | |
|
3 | mhmimalem.a | |
|
4 | mhmimalem.p | |
|
5 | mhmimalem.c | |
|
6 | 1 | adantr | |
7 | 2 | adantr | |
8 | simprl | |
|
9 | 7 8 | sseldd | |
10 | simprr | |
|
11 | 7 10 | sseldd | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 12 13 14 | mhmlin | |
16 | 6 9 11 15 | syl3anc | |
17 | 3 | oveqd | |
18 | 17 | fveq2d | |
19 | 4 | oveqd | |
20 | 18 19 | eqeq12d | |
21 | 20 | adantr | |
22 | 16 21 | mpbird | |
23 | eqid | |
|
24 | 12 23 | mhmf | |
25 | 1 24 | syl | |
26 | 25 | ffnd | |
27 | 26 | adantr | |
28 | 5 | 3expb | |
29 | fnfvima | |
|
30 | 27 7 28 29 | syl3anc | |
31 | 22 30 | eqeltrrd | |
32 | 31 | anassrs | |
33 | 32 | ralrimiva | |
34 | oveq2 | |
|
35 | 34 | eleq1d | |
36 | 35 | ralima | |
37 | 26 2 36 | syl2anc | |
38 | 37 | adantr | |
39 | 33 38 | mpbird | |
40 | 39 | ralrimiva | |
41 | oveq1 | |
|
42 | 41 | eleq1d | |
43 | 42 | ralbidv | |
44 | 43 | ralima | |
45 | 26 2 44 | syl2anc | |
46 | 40 45 | mpbird | |