Metamath Proof Explorer


Theorem mireq

Description: Equality deduction for point inversion. Theorem 7.9 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
mirmir.b φ B P
mireq.c φ C P
mireq.d φ M B = M C
Assertion mireq φ B = C

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 mirmir.b φ B P
10 mireq.c φ C P
11 mireq.d φ M B = M C
12 1 2 3 4 5 6 7 8 10 mircl φ M C P
13 1 2 3 4 5 6 7 8 9 mirfv φ M B = ι z P | A - ˙ z = A - ˙ B A z I B
14 13 11 eqtr3d φ ι z P | A - ˙ z = A - ˙ B A z I B = M C
15 1 2 3 6 9 7 mirreu3 φ ∃! z P A - ˙ z = A - ˙ B A z I B
16 oveq2 z = M C A - ˙ z = A - ˙ M C
17 16 eqeq1d z = M C A - ˙ z = A - ˙ B A - ˙ M C = A - ˙ B
18 oveq1 z = M C z I B = M C I B
19 18 eleq2d z = M C A z I B A M C I B
20 17 19 anbi12d z = M C A - ˙ z = A - ˙ B A z I B A - ˙ M C = A - ˙ B A M C I B
21 20 riota2 M C P ∃! z P A - ˙ z = A - ˙ B A z I B A - ˙ M C = A - ˙ B A M C I B ι z P | A - ˙ z = A - ˙ B A z I B = M C
22 12 15 21 syl2anc φ A - ˙ M C = A - ˙ B A M C I B ι z P | A - ˙ z = A - ˙ B A z I B = M C
23 14 22 mpbird φ A - ˙ M C = A - ˙ B A M C I B
24 23 simpld φ A - ˙ M C = A - ˙ B
25 24 eqcomd φ A - ˙ B = A - ˙ M C
26 23 simprd φ A M C I B
27 1 2 3 6 12 7 9 26 tgbtwncom φ A B I M C
28 1 2 3 4 5 6 7 8 12 9 25 27 ismir φ B = M M C
29 1 2 3 4 5 6 7 8 10 mirmir φ M M C = C
30 28 29 eqtrd φ B = C