Metamath Proof Explorer


Theorem modmknepk

Description: A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that K < ( N / 2 ) ! (Contributed by AV, 3-Sep-2025) (Revised by AV, 15-Nov-2025)

Ref Expression
Hypotheses modmknepk.j J = 1 ..^ N 2
modmknepk.i I = 0 ..^ N
Assertion modmknepk N 3 Y I K J Y K mod N Y + K mod N

Proof

Step Hyp Ref Expression
1 modmknepk.j J = 1 ..^ N 2
2 modmknepk.i I = 0 ..^ N
3 eluz3nn N 3 N
4 3 3ad2ant1 N 3 Y I K J N
5 elfzoelz Y 0 ..^ N Y
6 5 2 eleq2s Y I Y
7 6 3ad2ant2 N 3 Y I K J Y
8 elfzoelz K 1 ..^ N 2 K
9 8 1 eleq2s K J K
10 9 3ad2ant3 N 3 Y I K J K
11 9 zcnd K J K
12 11 2timesd K J 2 K = K + K
13 12 eqcomd K J K + K = 2 K
14 13 adantl N 3 K J K + K = 2 K
15 1red K J 1
16 9 zred K J K
17 2z 2
18 17 a1i K J 2
19 18 9 zmulcld K J 2 K
20 19 zred K J 2 K
21 elfzole1 K 1 ..^ N 2 1 K
22 21 1 eleq2s K J 1 K
23 elfzo1 K 1 ..^ N 2 K N 2 K < N 2
24 23 simp1bi K 1 ..^ N 2 K
25 24 1 eleq2s K J K
26 25 nnnn0d K J K 0
27 nn0le2x K 0 K 2 K
28 26 27 syl K J K 2 K
29 15 16 20 22 28 letrd K J 1 2 K
30 29 adantl N 3 K J 1 2 K
31 1 eleq2i K J K 1 ..^ N 2
32 2tceilhalfelfzo1 N 3 K 1 ..^ N 2 2 K < N
33 31 32 sylan2b N 3 K J 2 K < N
34 30 33 jca N 3 K J 1 2 K 2 K < N
35 breq2 K + K = 2 K 1 K + K 1 2 K
36 breq1 K + K = 2 K K + K < N 2 K < N
37 35 36 anbi12d K + K = 2 K 1 K + K K + K < N 1 2 K 2 K < N
38 34 37 syl5ibrcom N 3 K J K + K = 2 K 1 K + K K + K < N
39 14 38 mpd N 3 K J 1 K + K K + K < N
40 39 3adant2 N 3 Y I K J 1 K + K K + K < N
41 submodneaddmod N Y K K 1 K + K K + K < N Y + K mod N Y K mod N
42 41 necomd N Y K K 1 K + K K + K < N Y K mod N Y + K mod N
43 4 7 10 10 40 42 syl131anc N 3 Y I K J Y K mod N Y + K mod N