| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monpropd.3 |  | 
						
							| 2 |  | monpropd.4 |  | 
						
							| 3 |  | monpropd.c |  | 
						
							| 4 |  | monpropd.d |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 1 | ad2antrr |  | 
						
							| 9 | 8 | ad2antrr |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 |  | simp-4r |  | 
						
							| 12 | 5 6 7 9 10 11 | homfeqval |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 | ad5antr |  | 
						
							| 16 | 2 | ad5antr |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 |  | simp-5r |  | 
						
							| 19 |  | simp-4r |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 |  | simpllr |  | 
						
							| 22 | 5 6 13 14 15 16 17 18 19 20 21 | comfeqval |  | 
						
							| 23 | 12 22 | mpteq12dva |  | 
						
							| 24 | 23 | cnveqd |  | 
						
							| 25 | 24 | funeqd |  | 
						
							| 26 | 25 | ralbidva |  | 
						
							| 27 | 26 | rabbidva |  | 
						
							| 28 |  | simplr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 5 6 7 8 28 29 | homfeqval |  | 
						
							| 31 | 1 | homfeqbas |  | 
						
							| 32 | 31 | ad2antrr |  | 
						
							| 33 | 32 | raleqdv |  | 
						
							| 34 | 30 33 | rabeqbidv |  | 
						
							| 35 | 27 34 | eqtrd |  | 
						
							| 36 | 35 | 3impa |  | 
						
							| 37 | 36 | mpoeq3dva |  | 
						
							| 38 |  | mpoeq12 |  | 
						
							| 39 | 31 31 38 | syl2anc |  | 
						
							| 40 | 37 39 | eqtrd |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 5 6 13 41 3 | monfval |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 43 7 14 44 4 | monfval |  | 
						
							| 46 | 40 42 45 | 3eqtr4d |  |