Description: If F is a monomorphism and G is a section of F , then G is an inverse of F and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sectmon.b | |
|
sectmon.m | |
||
sectmon.s | |
||
sectmon.c | |
||
sectmon.x | |
||
sectmon.y | |
||
monsect.n | |
||
monsect.1 | |
||
monsect.2 | |
||
Assertion | monsect | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sectmon.b | |
|
2 | sectmon.m | |
|
3 | sectmon.s | |
|
4 | sectmon.c | |
|
5 | sectmon.x | |
|
6 | sectmon.y | |
|
7 | monsect.n | |
|
8 | monsect.1 | |
|
9 | monsect.2 | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 1 10 11 12 3 4 6 5 | issect | |
14 | 9 13 | mpbid | |
15 | 14 | simp3d | |
16 | 15 | oveq1d | |
17 | 14 | simp2d | |
18 | 14 | simp1d | |
19 | 1 10 11 4 5 6 5 17 18 6 17 | catass | |
20 | 1 10 12 4 5 11 6 17 | catlid | |
21 | 1 10 12 4 5 11 6 17 | catrid | |
22 | 20 21 | eqtr4d | |
23 | 16 19 22 | 3eqtr3d | |
24 | 1 10 11 4 5 6 5 17 18 | catcocl | |
25 | 1 10 12 4 5 | catidcl | |
26 | 1 10 11 2 4 5 6 5 8 24 25 | moni | |
27 | 23 26 | mpbid | |
28 | 1 10 11 12 3 4 5 6 17 18 | issect2 | |
29 | 27 28 | mpbird | |
30 | 1 7 4 5 6 3 | isinv | |
31 | 29 9 30 | mpbir2and | |