Metamath Proof Explorer


Theorem mppsval

Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p P=mPreStT
mppsval.j J=mPPStT
mppsval.c C=mClsT
Assertion mppsval J=dha|dhaPadCh

Proof

Step Hyp Ref Expression
1 mppsval.p P=mPreStT
2 mppsval.j J=mPPStT
3 mppsval.c C=mClsT
4 fveq2 t=TmPreStt=mPreStT
5 4 1 eqtr4di t=TmPreStt=P
6 5 eleq2d t=TdhamPreSttdhaP
7 fveq2 t=TmClst=mClsT
8 7 3 eqtr4di t=TmClst=C
9 8 oveqd t=TdmClsth=dCh
10 9 eleq2d t=TadmClsthadCh
11 6 10 anbi12d t=TdhamPreSttadmClsthdhaPadCh
12 11 oprabbidv t=Tdha|dhamPreSttadmClsth=dha|dhaPadCh
13 df-mpps mPPSt=tVdha|dhamPreSttadmClsth
14 1 fvexi PV
15 1 2 3 mppspstlem dha|dhaPadChP
16 14 15 ssexi dha|dhaPadChV
17 12 13 16 fvmpt TVmPPStT=dha|dhaPadCh
18 fvprc ¬TVmPPStT=
19 df-oprab dha|dhaPadCh=x|dhax=dhadhaPadCh
20 abn0 x|dhax=dhadhaPadChxdhax=dhadhaPadCh
21 elfvex dhamPreStTTV
22 21 1 eleq2s dhaPTV
23 22 ad2antrl x=dhadhaPadChTV
24 23 exlimivv hax=dhadhaPadChTV
25 24 exlimivv xdhax=dhadhaPadChTV
26 20 25 sylbi x|dhax=dhadhaPadChTV
27 26 necon1bi ¬TVx|dhax=dhadhaPadCh=
28 19 27 eqtrid ¬TVdha|dhaPadCh=
29 18 28 eqtr4d ¬TVmPPStT=dha|dhaPadCh
30 17 29 pm2.61i mPPStT=dha|dhaPadCh
31 2 30 eqtri J=dha|dhaPadCh