| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptcoe1matfsupp.a |
|
| 2 |
|
mptcoe1matfsupp.q |
|
| 3 |
|
mptcoe1matfsupp.l |
|
| 4 |
|
fvexd |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
simp2 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simp3 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simp3 |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
|
eqid |
|
| 14 |
13 3 2 6
|
coe1fvalcl |
|
| 15 |
12 14
|
sylan |
|
| 16 |
1 5 6 8 10 15
|
matecld |
|
| 17 |
|
eqid |
|
| 18 |
13 3 2 17 6
|
coe1fsupp |
|
| 19 |
|
elrabi |
|
| 20 |
12 18 19
|
3syl |
|
| 21 |
|
fvex |
|
| 22 |
20 21
|
jctir |
|
| 23 |
13 3 2 17
|
coe1sfi |
|
| 24 |
12 23
|
syl |
|
| 25 |
|
fsuppmapnn0ub |
|
| 26 |
22 24 25
|
sylc |
|
| 27 |
|
csbov |
|
| 28 |
|
csbfv |
|
| 29 |
28
|
oveqi |
|
| 30 |
27 29
|
eqtri |
|
| 31 |
30
|
a1i |
|
| 32 |
|
oveq |
|
| 33 |
32
|
adantl |
|
| 34 |
|
eqid |
|
| 35 |
1 34
|
mat0op |
|
| 36 |
35
|
3adant3 |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
|
eqidd |
|
| 39 |
37 38 7 9 4
|
ovmpod |
|
| 40 |
39
|
ad4antr |
|
| 41 |
31 33 40
|
3eqtrd |
|
| 42 |
41
|
exp31 |
|
| 43 |
42
|
a2d |
|
| 44 |
43
|
ralimdva |
|
| 45 |
44
|
reximdva |
|
| 46 |
26 45
|
mpd |
|
| 47 |
4 16 46
|
mptnn0fsupp |
|