| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptcoe1matfsupp.a |  | 
						
							| 2 |  | mptcoe1matfsupp.q |  | 
						
							| 3 |  | mptcoe1matfsupp.l |  | 
						
							| 4 |  | fvexd |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | simp2 |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | simp3 |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | simp3 |  | 
						
							| 12 | 11 | 3ad2ant1 |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 3 2 6 | coe1fvalcl |  | 
						
							| 15 | 12 14 | sylan |  | 
						
							| 16 | 1 5 6 8 10 15 | matecld |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 13 3 2 17 6 | coe1fsupp |  | 
						
							| 19 |  | elrabi |  | 
						
							| 20 | 12 18 19 | 3syl |  | 
						
							| 21 |  | fvex |  | 
						
							| 22 | 20 21 | jctir |  | 
						
							| 23 | 13 3 2 17 | coe1sfi |  | 
						
							| 24 | 12 23 | syl |  | 
						
							| 25 |  | fsuppmapnn0ub |  | 
						
							| 26 | 22 24 25 | sylc |  | 
						
							| 27 |  | csbov |  | 
						
							| 28 |  | csbfv |  | 
						
							| 29 | 28 | oveqi |  | 
						
							| 30 | 27 29 | eqtri |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 |  | oveq |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 34 | mat0op |  | 
						
							| 36 | 35 | 3adant3 |  | 
						
							| 37 | 36 | 3ad2ant1 |  | 
						
							| 38 |  | eqidd |  | 
						
							| 39 | 37 38 7 9 4 | ovmpod |  | 
						
							| 40 | 39 | ad4antr |  | 
						
							| 41 | 31 33 40 | 3eqtrd |  | 
						
							| 42 | 41 | exp31 |  | 
						
							| 43 | 42 | a2d |  | 
						
							| 44 | 43 | ralimdva |  | 
						
							| 45 | 44 | reximdva |  | 
						
							| 46 | 26 45 | mpd |  | 
						
							| 47 | 4 16 46 | mptnn0fsupp |  |