Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2sq.1 | |
|
Assertion | mul2sq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 1 | 2sqlem1 | |
3 | 1 | 2sqlem1 | |
4 | reeanv | |
|
5 | gzmulcl | |
|
6 | gzcn | |
|
7 | gzcn | |
|
8 | absmul | |
|
9 | 6 7 8 | syl2an | |
10 | 9 | oveq1d | |
11 | 6 | abscld | |
12 | 11 | recnd | |
13 | 7 | abscld | |
14 | 13 | recnd | |
15 | sqmul | |
|
16 | 12 14 15 | syl2an | |
17 | 10 16 | eqtr2d | |
18 | fveq2 | |
|
19 | 18 | oveq1d | |
20 | 19 | rspceeqv | |
21 | 5 17 20 | syl2anc | |
22 | 1 | 2sqlem1 | |
23 | 21 22 | sylibr | |
24 | oveq12 | |
|
25 | 24 | eleq1d | |
26 | 23 25 | syl5ibrcom | |
27 | 26 | rexlimivv | |
28 | 4 27 | sylbir | |
29 | 2 3 28 | syl2anb | |