Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnndir.b |
|
2 |
|
mulgnndir.t |
|
3 |
|
mulgnndir.p |
|
4 |
|
mndsgrp |
Could not format ( G e. Mnd -> G e. Smgrp ) : No typesetting found for |- ( G e. Mnd -> G e. Smgrp ) with typecode |- |
5 |
4
|
adantr |
Could not format ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) : No typesetting found for |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) with typecode |- |
6 |
5
|
ad2antrr |
Could not format ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) : No typesetting found for |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) with typecode |- |
7 |
|
simplr |
|
8 |
|
simpr |
|
9 |
|
simpr3 |
|
10 |
9
|
ad2antrr |
|
11 |
1 2 3
|
mulgnndir |
Could not format ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) : No typesetting found for |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) with typecode |- |
12 |
6 7 8 10 11
|
syl13anc |
|
13 |
|
simpll |
|
14 |
|
simpr1 |
|
15 |
14
|
adantr |
|
16 |
|
simplr3 |
|
17 |
1 2 13 15 16
|
mulgnn0cld |
|
18 |
|
eqid |
|
19 |
1 3 18
|
mndrid |
|
20 |
13 17 19
|
syl2anc |
|
21 |
|
simpr |
|
22 |
21
|
oveq1d |
|
23 |
1 18 2
|
mulg0 |
|
24 |
16 23
|
syl |
|
25 |
22 24
|
eqtrd |
|
26 |
25
|
oveq2d |
|
27 |
21
|
oveq2d |
|
28 |
15
|
nn0cnd |
|
29 |
28
|
addridd |
|
30 |
27 29
|
eqtrd |
|
31 |
30
|
oveq1d |
|
32 |
20 26 31
|
3eqtr4rd |
|
33 |
32
|
adantlr |
|
34 |
|
simpr2 |
|
35 |
|
elnn0 |
|
36 |
34 35
|
sylib |
|
37 |
36
|
adantr |
|
38 |
12 33 37
|
mpjaodan |
|
39 |
|
simpll |
|
40 |
|
simplr2 |
|
41 |
|
simplr3 |
|
42 |
1 2 39 40 41
|
mulgnn0cld |
|
43 |
1 3 18
|
mndlid |
|
44 |
39 42 43
|
syl2anc |
|
45 |
|
simpr |
|
46 |
45
|
oveq1d |
|
47 |
41 23
|
syl |
|
48 |
46 47
|
eqtrd |
|
49 |
48
|
oveq1d |
|
50 |
45
|
oveq1d |
|
51 |
40
|
nn0cnd |
|
52 |
51
|
addlidd |
|
53 |
50 52
|
eqtrd |
|
54 |
53
|
oveq1d |
|
55 |
44 49 54
|
3eqtr4rd |
|
56 |
|
elnn0 |
|
57 |
14 56
|
sylib |
|
58 |
38 55 57
|
mpjaodan |
|