Metamath Proof Explorer


Theorem mulgsubdi

Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgsubdi.b B=BaseG
mulgsubdi.t ·˙=G
mulgsubdi.d -˙=-G
Assertion mulgsubdi GAbelMXBYBM·˙X-˙Y=M·˙X-˙M·˙Y

Proof

Step Hyp Ref Expression
1 mulgsubdi.b B=BaseG
2 mulgsubdi.t ·˙=G
3 mulgsubdi.d -˙=-G
4 simpl GAbelMXBYBGAbel
5 simpr1 GAbelMXBYBM
6 simpr2 GAbelMXBYBXB
7 ablgrp GAbelGGrp
8 7 adantr GAbelMXBYBGGrp
9 simpr3 GAbelMXBYBYB
10 eqid invgG=invgG
11 1 10 grpinvcl GGrpYBinvgGYB
12 8 9 11 syl2anc GAbelMXBYBinvgGYB
13 eqid +G=+G
14 1 2 13 mulgdi GAbelMXBinvgGYBM·˙X+GinvgGY=M·˙X+GM·˙invgGY
15 4 5 6 12 14 syl13anc GAbelMXBYBM·˙X+GinvgGY=M·˙X+GM·˙invgGY
16 1 2 10 mulginvcom GGrpMYBM·˙invgGY=invgGM·˙Y
17 8 5 9 16 syl3anc GAbelMXBYBM·˙invgGY=invgGM·˙Y
18 17 oveq2d GAbelMXBYBM·˙X+GM·˙invgGY=M·˙X+GinvgGM·˙Y
19 15 18 eqtrd GAbelMXBYBM·˙X+GinvgGY=M·˙X+GinvgGM·˙Y
20 1 13 10 3 grpsubval XBYBX-˙Y=X+GinvgGY
21 6 9 20 syl2anc GAbelMXBYBX-˙Y=X+GinvgGY
22 21 oveq2d GAbelMXBYBM·˙X-˙Y=M·˙X+GinvgGY
23 1 2 mulgcl GGrpMXBM·˙XB
24 8 5 6 23 syl3anc GAbelMXBYBM·˙XB
25 1 2 mulgcl GGrpMYBM·˙YB
26 8 5 9 25 syl3anc GAbelMXBYBM·˙YB
27 1 13 10 3 grpsubval M·˙XBM·˙YBM·˙X-˙M·˙Y=M·˙X+GinvgGM·˙Y
28 24 26 27 syl2anc GAbelMXBYBM·˙X-˙M·˙Y=M·˙X+GinvgGM·˙Y
29 19 22 28 3eqtr4d GAbelMXBYBM·˙X-˙Y=M·˙X-˙M·˙Y