Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgsubdi.b | |
|
mulgsubdi.t | |
||
mulgsubdi.d | |
||
Assertion | mulgsubdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgsubdi.b | |
|
2 | mulgsubdi.t | |
|
3 | mulgsubdi.d | |
|
4 | simpl | |
|
5 | simpr1 | |
|
6 | simpr2 | |
|
7 | ablgrp | |
|
8 | 7 | adantr | |
9 | simpr3 | |
|
10 | eqid | |
|
11 | 1 10 | grpinvcl | |
12 | 8 9 11 | syl2anc | |
13 | eqid | |
|
14 | 1 2 13 | mulgdi | |
15 | 4 5 6 12 14 | syl13anc | |
16 | 1 2 10 | mulginvcom | |
17 | 8 5 9 16 | syl3anc | |
18 | 17 | oveq2d | |
19 | 15 18 | eqtrd | |
20 | 1 13 10 3 | grpsubval | |
21 | 6 9 20 | syl2anc | |
22 | 21 | oveq2d | |
23 | 1 2 | mulgcl | |
24 | 8 5 6 23 | syl3anc | |
25 | 1 2 | mulgcl | |
26 | 8 5 9 25 | syl3anc | |
27 | 1 13 10 3 | grpsubval | |
28 | 24 26 27 | syl2anc | |
29 | 19 22 28 | 3eqtr4d | |