Metamath Proof Explorer


Theorem mullt0b1d

Description: When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses mullt0b1d.a φ A
mullt0b1d.b φ B
mullt0b1d.1 φ A < 0
Assertion mullt0b1d φ 0 < B A B < 0

Proof

Step Hyp Ref Expression
1 mullt0b1d.a φ A
2 mullt0b1d.b φ B
3 mullt0b1d.1 φ A < 0
4 1 adantr φ 0 < B A
5 2 adantr φ 0 < B B
6 3 adantr φ 0 < B A < 0
7 simpr φ 0 < B 0 < B
8 4 5 6 7 mulltgt0d φ 0 < B A B < 0
9 3 lt0ne0d φ A 0
10 1 9 sn-rereccld Could not format ( ph -> ( 1 /R A ) e. RR ) : No typesetting found for |- ( ph -> ( 1 /R A ) e. RR ) with typecode |-
11 1 2 remulcld φ A B
12 10 11 remulneg2d Could not format ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) ) : No typesetting found for |- ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) ) with typecode |-
13 1 9 rerecid2 Could not format ( ph -> ( ( 1 /R A ) x. A ) = 1 ) : No typesetting found for |- ( ph -> ( ( 1 /R A ) x. A ) = 1 ) with typecode |-
14 13 oveq1d Could not format ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( 1 x. B ) ) : No typesetting found for |- ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( 1 x. B ) ) with typecode |-
15 10 recnd Could not format ( ph -> ( 1 /R A ) e. CC ) : No typesetting found for |- ( ph -> ( 1 /R A ) e. CC ) with typecode |-
16 1 recnd φ A
17 2 recnd φ B
18 15 16 17 mulassd Could not format ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( ( 1 /R A ) x. ( A x. B ) ) ) : No typesetting found for |- ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( ( 1 /R A ) x. ( A x. B ) ) ) with typecode |-
19 remullid B 1 B = B
20 2 19 syl φ 1 B = B
21 14 18 20 3eqtr3d Could not format ( ph -> ( ( 1 /R A ) x. ( A x. B ) ) = B ) : No typesetting found for |- ( ph -> ( ( 1 /R A ) x. ( A x. B ) ) = B ) with typecode |-
22 21 oveq2d Could not format ( ph -> ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) = ( 0 -R B ) ) : No typesetting found for |- ( ph -> ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) = ( 0 -R B ) ) with typecode |-
23 12 22 eqtrd Could not format ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) : No typesetting found for |- ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) with typecode |-
24 23 adantr Could not format ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) : No typesetting found for |- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) with typecode |-
25 10 adantr Could not format ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) e. RR ) : No typesetting found for |- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) e. RR ) with typecode |-
26 rernegcl A B 0 - A B
27 11 26 syl φ 0 - A B
28 27 adantr φ 0 < 0 - A B 0 - A B
29 1 3 sn-reclt0d Could not format ( ph -> ( 1 /R A ) < 0 ) : No typesetting found for |- ( ph -> ( 1 /R A ) < 0 ) with typecode |-
30 29 adantr Could not format ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) < 0 ) : No typesetting found for |- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) < 0 ) with typecode |-
31 simpr φ 0 < 0 - A B 0 < 0 - A B
32 25 28 30 31 mulltgt0d Could not format ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) < 0 ) : No typesetting found for |- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) < 0 ) with typecode |-
33 24 32 eqbrtrrd φ 0 < 0 - A B 0 - B < 0
34 33 ex φ 0 < 0 - A B 0 - B < 0
35 relt0neg1 A B A B < 0 0 < 0 - A B
36 11 35 syl φ A B < 0 0 < 0 - A B
37 relt0neg2 B 0 < B 0 - B < 0
38 2 37 syl φ 0 < B 0 - B < 0
39 34 36 38 3imtr4d φ A B < 0 0 < B
40 39 imp φ A B < 0 0 < B
41 8 40 impbida φ 0 < B A B < 0