Metamath Proof Explorer


Theorem mulsub

Description: Product of two differences. (Contributed by NM, 14-Jan-2006)

Ref Expression
Assertion mulsub ABCDABCD=AC+DB-AD+CB

Proof

Step Hyp Ref Expression
1 negsub ABA+B=AB
2 negsub CDC+D=CD
3 1 2 oveqan12d ABCDA+BC+D=ABCD
4 negcl BB
5 negcl DD
6 muladd ABCDA+BC+D=AC+DB+AD+CB
7 5 6 sylanr2 ABCDA+BC+D=AC+DB+AD+CB
8 4 7 sylanl2 ABCDA+BC+D=AC+DB+AD+CB
9 mul2neg DBDB=DB
10 9 ancoms BDDB=DB
11 10 oveq2d BDAC+DB=AC+DB
12 11 ad2ant2l ABCDAC+DB=AC+DB
13 mulneg2 ADAD=AD
14 mulneg2 CBCB=CB
15 13 14 oveqan12d ADCBAD+CB=-AD+CB
16 mulcl ADAD
17 mulcl CBCB
18 negdi ADCBAD+CB=-AD+CB
19 16 17 18 syl2an ADCBAD+CB=-AD+CB
20 15 19 eqtr4d ADCBAD+CB=AD+CB
21 20 ancom2s ADBCAD+CB=AD+CB
22 21 an42s ABCDAD+CB=AD+CB
23 12 22 oveq12d ABCDAC+DB+AD+CB=AC+DB+AD+CB
24 mulcl ACAC
25 mulcl DBDB
26 25 ancoms BDDB
27 addcl ACDBAC+DB
28 24 26 27 syl2an ACBDAC+DB
29 28 an4s ABCDAC+DB
30 17 ancoms BCCB
31 addcl ADCBAD+CB
32 16 30 31 syl2an ADBCAD+CB
33 32 an42s ABCDAD+CB
34 29 33 negsubd ABCDAC+DB+AD+CB=AC+DB-AD+CB
35 8 23 34 3eqtrd ABCDA+BC+D=AC+DB-AD+CB
36 3 35 eqtr3d ABCDABCD=AC+DB-AD+CB