Description: Product of two differences. (Contributed by NM, 14-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | mulsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsub | |
|
2 | negsub | |
|
3 | 1 2 | oveqan12d | |
4 | negcl | |
|
5 | negcl | |
|
6 | muladd | |
|
7 | 5 6 | sylanr2 | |
8 | 4 7 | sylanl2 | |
9 | mul2neg | |
|
10 | 9 | ancoms | |
11 | 10 | oveq2d | |
12 | 11 | ad2ant2l | |
13 | mulneg2 | |
|
14 | mulneg2 | |
|
15 | 13 14 | oveqan12d | |
16 | mulcl | |
|
17 | mulcl | |
|
18 | negdi | |
|
19 | 16 17 18 | syl2an | |
20 | 15 19 | eqtr4d | |
21 | 20 | ancom2s | |
22 | 21 | an42s | |
23 | 12 22 | oveq12d | |
24 | mulcl | |
|
25 | mulcl | |
|
26 | 25 | ancoms | |
27 | addcl | |
|
28 | 24 26 27 | syl2an | |
29 | 28 | an4s | |
30 | 17 | ancoms | |
31 | addcl | |
|
32 | 16 30 31 | syl2an | |
33 | 32 | an42s | |
34 | 29 33 | negsubd | |
35 | 8 23 34 | 3eqtrd | |
36 | 3 35 | eqtr3d | |