Metamath Proof Explorer


Theorem mulsuble0b

Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013)

Ref Expression
Assertion mulsuble0b ABCABCB0ABBCCBBA

Proof

Step Hyp Ref Expression
1 resubcl ABAB
2 1 3adant3 ABCAB
3 resubcl CBCB
4 3 ancoms BCCB
5 4 3adant1 ABCCB
6 mulle0b ABCBABCB0AB00CB0ABCB0
7 2 5 6 syl2anc ABCABCB0AB00CB0ABCB0
8 suble0 ABAB0AB
9 8 3adant3 ABCAB0AB
10 subge0 CB0CBBC
11 10 ancoms BC0CBBC
12 11 3adant1 ABC0CBBC
13 9 12 anbi12d ABCAB00CBABBC
14 subge0 AB0ABBA
15 14 3adant3 ABC0ABBA
16 suble0 CBCB0CB
17 16 ancoms BCCB0CB
18 17 3adant1 ABCCB0CB
19 15 18 anbi12d ABC0ABCB0BACB
20 19 biancomd ABC0ABCB0CBBA
21 13 20 orbi12d ABCAB00CB0ABCB0ABBCCBBA
22 7 21 bitrd ABCABCB0ABBCCBBA