Metamath Proof Explorer


Theorem mzpexpmpt

Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzpexpmpt x V A mzPoly V D 0 x V A D mzPoly V

Proof

Step Hyp Ref Expression
1 oveq2 a = 0 A a = A 0
2 1 mpteq2dv a = 0 x V A a = x V A 0
3 2 eleq1d a = 0 x V A a mzPoly V x V A 0 mzPoly V
4 3 imbi2d a = 0 x V A mzPoly V x V A a mzPoly V x V A mzPoly V x V A 0 mzPoly V
5 oveq2 a = b A a = A b
6 5 mpteq2dv a = b x V A a = x V A b
7 6 eleq1d a = b x V A a mzPoly V x V A b mzPoly V
8 7 imbi2d a = b x V A mzPoly V x V A a mzPoly V x V A mzPoly V x V A b mzPoly V
9 oveq2 a = b + 1 A a = A b + 1
10 9 mpteq2dv a = b + 1 x V A a = x V A b + 1
11 10 eleq1d a = b + 1 x V A a mzPoly V x V A b + 1 mzPoly V
12 11 imbi2d a = b + 1 x V A mzPoly V x V A a mzPoly V x V A mzPoly V x V A b + 1 mzPoly V
13 oveq2 a = D A a = A D
14 13 mpteq2dv a = D x V A a = x V A D
15 14 eleq1d a = D x V A a mzPoly V x V A D mzPoly V
16 15 imbi2d a = D x V A mzPoly V x V A a mzPoly V x V A mzPoly V x V A D mzPoly V
17 mzpf x V A mzPoly V x V A : V
18 zsscn
19 fss x V A : V x V A : V
20 17 18 19 sylancl x V A mzPoly V x V A : V
21 eqid x V A = x V A
22 21 fmpt x V A x V A : V
23 20 22 sylibr x V A mzPoly V x V A
24 nfra1 x x V A
25 rspa x V A x V A
26 25 exp0d x V A x V A 0 = 1
27 24 26 mpteq2da x V A x V A 0 = x V 1
28 23 27 syl x V A mzPoly V x V A 0 = x V 1
29 elfvex x V A mzPoly V V V
30 1z 1
31 mzpconstmpt V V 1 x V 1 mzPoly V
32 29 30 31 sylancl x V A mzPoly V x V 1 mzPoly V
33 28 32 eqeltrd x V A mzPoly V x V A 0 mzPoly V
34 23 3ad2ant2 b 0 x V A mzPoly V x V A b mzPoly V x V A
35 simp1 b 0 x V A mzPoly V x V A b mzPoly V b 0
36 nfv x b 0
37 24 36 nfan x x V A b 0
38 25 adantlr x V A b 0 x V A
39 simplr x V A b 0 x V b 0
40 38 39 expp1d x V A b 0 x V A b + 1 = A b A
41 37 40 mpteq2da x V A b 0 x V A b + 1 = x V A b A
42 34 35 41 syl2anc b 0 x V A mzPoly V x V A b mzPoly V x V A b + 1 = x V A b A
43 simp3 b 0 x V A mzPoly V x V A b mzPoly V x V A b mzPoly V
44 simp2 b 0 x V A mzPoly V x V A b mzPoly V x V A mzPoly V
45 mzpmulmpt x V A b mzPoly V x V A mzPoly V x V A b A mzPoly V
46 43 44 45 syl2anc b 0 x V A mzPoly V x V A b mzPoly V x V A b A mzPoly V
47 42 46 eqeltrd b 0 x V A mzPoly V x V A b mzPoly V x V A b + 1 mzPoly V
48 47 3exp b 0 x V A mzPoly V x V A b mzPoly V x V A b + 1 mzPoly V
49 48 a2d b 0 x V A mzPoly V x V A b mzPoly V x V A mzPoly V x V A b + 1 mzPoly V
50 4 8 12 16 33 49 nn0ind D 0 x V A mzPoly V x V A D mzPoly V
51 50 impcom x V A mzPoly V D 0 x V A D mzPoly V