Metamath Proof Explorer


Theorem mzpindd

Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses mzpindd.co φfχ
mzpindd.pr φfVθ
mzpindd.ad φf:Vτg:Vηζ
mzpindd.mu φf:Vτg:Vησ
mzpindd.1 x=V×fψχ
mzpindd.2 x=gVgfψθ
mzpindd.3 x=fψτ
mzpindd.4 x=gψη
mzpindd.5 x=f+fgψζ
mzpindd.6 x=f×fgψσ
mzpindd.7 x=Aψρ
Assertion mzpindd φAmzPolyVρ

Proof

Step Hyp Ref Expression
1 mzpindd.co φfχ
2 mzpindd.pr φfVθ
3 mzpindd.ad φf:Vτg:Vηζ
4 mzpindd.mu φf:Vτg:Vησ
5 mzpindd.1 x=V×fψχ
6 mzpindd.2 x=gVgfψθ
7 mzpindd.3 x=fψτ
8 mzpindd.4 x=gψη
9 mzpindd.5 x=f+fgψζ
10 mzpindd.6 x=f×fgψσ
11 mzpindd.7 x=Aψρ
12 elfvex AmzPolyVVV
13 12 adantl φAmzPolyVVV
14 mzpval VVmzPolyV=mzPolyCldV
15 14 adantl φVVmzPolyV=mzPolyCldV
16 ssrab2 xV|ψV
17 16 a1i φVVxV|ψV
18 ovex VV
19 zex V
20 18 19 constmap fV×fV
21 20 adantl φfV×fV
22 5 elrab V×fxV|ψV×fVχ
23 21 1 22 sylanbrc φfV×fxV|ψ
24 23 ralrimiva φfV×fxV|ψ
25 24 adantr φVVfV×fxV|ψ
26 19 a1i φVVfVgVV
27 simpllr φVVfVgVVV
28 simpr φVVfVgVgV
29 elmapg VVVgVg:V
30 29 biimpa VVVgVg:V
31 26 27 28 30 syl21anc φVVfVgVg:V
32 simplr φVVfVgVfV
33 31 32 ffvelcdmd φVVfVgVgf
34 33 fmpttd φVVfVgVgf:V
35 19 18 elmap gVgfVgVgf:V
36 34 35 sylibr φVVfVgVgfV
37 2 adantlr φVVfVθ
38 6 elrab gVgfxV|ψgVgfVθ
39 36 37 38 sylanbrc φVVfVgVgfxV|ψ
40 39 ralrimiva φVVfVgVgfxV|ψ
41 25 40 jca φVVfV×fxV|ψfVgVgfxV|ψ
42 zaddcl aba+b
43 42 adantl f:Vg:Vaba+b
44 simpl f:Vg:Vf:V
45 simpr f:Vg:Vg:V
46 18 a1i f:Vg:VVV
47 inidm VV=V
48 43 44 45 46 46 47 off f:Vg:Vf+fg:V
49 48 ad2ant2r f:Vτg:Vηf+fg:V
50 49 adantl φf:Vτg:Vηf+fg:V
51 3 3expb φf:Vτg:Vηζ
52 50 51 jca φf:Vτg:Vηf+fg:Vζ
53 zmulcl abab
54 53 adantl f:Vg:Vabab
55 54 44 45 46 46 47 off f:Vg:Vf×fg:V
56 55 ad2ant2r f:Vτg:Vηf×fg:V
57 56 adantl φf:Vτg:Vηf×fg:V
58 4 3expb φf:Vτg:Vησ
59 52 57 58 jca32 φf:Vτg:Vηf+fg:Vζf×fg:Vσ
60 59 ex φf:Vτg:Vηf+fg:Vζf×fg:Vσ
61 19 18 elmap fVf:V
62 61 anbi1i fVτf:Vτ
63 19 18 elmap gVg:V
64 63 anbi1i gVηg:Vη
65 62 64 anbi12i fVτgVηf:Vτg:Vη
66 19 18 elmap f+fgVf+fg:V
67 66 anbi1i f+fgVζf+fg:Vζ
68 19 18 elmap f×fgVf×fg:V
69 68 anbi1i f×fgVσf×fg:Vσ
70 67 69 anbi12i f+fgVζf×fgVσf+fg:Vζf×fg:Vσ
71 60 65 70 3imtr4g φfVτgVηf+fgVζf×fgVσ
72 7 elrab fxV|ψfVτ
73 8 elrab gxV|ψgVη
74 72 73 anbi12i fxV|ψgxV|ψfVτgVη
75 9 elrab f+fgxV|ψf+fgVζ
76 10 elrab f×fgxV|ψf×fgVσ
77 75 76 anbi12i f+fgxV|ψf×fgxV|ψf+fgVζf×fgVσ
78 71 74 77 3imtr4g φfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
79 78 ralrimivv φfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
80 79 adantr φVVfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
81 17 41 80 jca32 φVVxV|ψVfV×fxV|ψfVgVgfxV|ψfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
82 elmzpcl VVxV|ψmzPolyCldVxV|ψVfV×fxV|ψfVgVgfxV|ψfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
83 82 adantl φVVxV|ψmzPolyCldVxV|ψVfV×fxV|ψfVgVgfxV|ψfxV|ψgxV|ψf+fgxV|ψf×fgxV|ψ
84 81 83 mpbird φVVxV|ψmzPolyCldV
85 intss1 xV|ψmzPolyCldVmzPolyCldVxV|ψ
86 84 85 syl φVVmzPolyCldVxV|ψ
87 15 86 eqsstrd φVVmzPolyVxV|ψ
88 87 sselda φVVAmzPolyVAxV|ψ
89 88 an32s φAmzPolyVVVAxV|ψ
90 13 89 mpdan φAmzPolyVAxV|ψ
91 11 elrab AxV|ψAVρ
92 91 simprbi AxV|ψρ
93 90 92 syl φAmzPolyVρ