Metamath Proof Explorer


Theorem neik0pk1imk0

Description: Kuratowski's K0' and K1 axioms imply K0. Neighborhood version. (Contributed by RP, 3-Jun-2021)

Ref Expression
Hypotheses neik0pk1imk0.bex φ B V
neik0pk1imk0.n φ N 𝒫 𝒫 B B
neik0pk1imk0.k0p φ x B N x
neik0pk1imk0.k1 φ x B s 𝒫 B t 𝒫 B s N x s t t N x
Assertion neik0pk1imk0 φ x B B N x

Proof

Step Hyp Ref Expression
1 neik0pk1imk0.bex φ B V
2 neik0pk1imk0.n φ N 𝒫 𝒫 B B
3 neik0pk1imk0.k0p φ x B N x
4 neik0pk1imk0.k1 φ x B s 𝒫 B t 𝒫 B s N x s t t N x
5 pwidg B V B 𝒫 B
6 sseq2 t = B s t s B
7 6 anbi2d t = B s N x s t s N x s B
8 eleq1 t = B t N x B N x
9 7 8 imbi12d t = B s N x s t t N x s N x s B B N x
10 9 rspcv B 𝒫 B t 𝒫 B s N x s t t N x s N x s B B N x
11 1 5 10 3syl φ t 𝒫 B s N x s t t N x s N x s B B N x
12 11 ralimdv φ s 𝒫 B t 𝒫 B s N x s t t N x s 𝒫 B s N x s B B N x
13 12 ralimdv φ x B s 𝒫 B t 𝒫 B s N x s t t N x x B s 𝒫 B s N x s B B N x
14 4 13 mpd φ x B s 𝒫 B s N x s B B N x
15 r19.23v s 𝒫 B s N x s B B N x s 𝒫 B s N x s B B N x
16 15 biimpi s 𝒫 B s N x s B B N x s 𝒫 B s N x s B B N x
17 16 a1i φ s 𝒫 B s N x s B B N x s 𝒫 B s N x s B B N x
18 17 ralimdv φ x B s 𝒫 B s N x s B B N x x B s 𝒫 B s N x s B B N x
19 14 18 mpd φ x B s 𝒫 B s N x s B B N x
20 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
21 2 20 syl φ N : B 𝒫 𝒫 B
22 21 ffvelrnda φ x B N x 𝒫 𝒫 B
23 22 elpwid φ x B N x 𝒫 B
24 23 sseld φ x B s N x s 𝒫 B
25 24 ancrd φ x B s N x s 𝒫 B s N x
26 25 eximdv φ x B s s N x s s 𝒫 B s N x
27 n0 N x s s N x
28 df-rex s 𝒫 B s N x s s 𝒫 B s N x
29 26 27 28 3imtr4g φ x B N x s 𝒫 B s N x
30 29 imp φ x B N x s 𝒫 B s N x
31 elpwi s 𝒫 B s B
32 24 31 syl6 φ x B s N x s B
33 32 ralrimivw φ x B s 𝒫 B s N x s B
34 33 adantr φ x B N x s 𝒫 B s N x s B
35 30 34 r19.29imd φ x B N x s 𝒫 B s N x s B
36 35 ex φ x B N x s 𝒫 B s N x s B
37 36 ralimdva φ x B N x x B s 𝒫 B s N x s B
38 3 37 mpd φ x B s 𝒫 B s N x s B
39 ralim x B s 𝒫 B s N x s B B N x x B s 𝒫 B s N x s B x B B N x
40 19 38 39 sylc φ x B B N x