Metamath Proof Explorer


Theorem isotone1

Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)

Ref Expression
Assertion isotone1 a 𝒫 A b 𝒫 A a b F a F b a 𝒫 A b 𝒫 A F a F b F a b

Proof

Step Hyp Ref Expression
1 sseq1 a = c a b c b
2 fveq2 a = c F a = F c
3 2 sseq1d a = c F a F b F c F b
4 1 3 imbi12d a = c a b F a F b c b F c F b
5 sseq2 b = d c b c d
6 fveq2 b = d F b = F d
7 6 sseq2d b = d F c F b F c F d
8 5 7 imbi12d b = d c b F c F b c d F c F d
9 4 8 cbvral2vw a 𝒫 A b 𝒫 A a b F a F b c 𝒫 A d 𝒫 A c d F c F d
10 ssun1 a a b
11 simprl c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a 𝒫 A
12 pwuncl a 𝒫 A b 𝒫 A a b 𝒫 A
13 12 adantl c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a b 𝒫 A
14 simpl c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A c 𝒫 A d 𝒫 A c d F c F d
15 sseq1 c = a c d a d
16 fveq2 c = a F c = F a
17 16 sseq1d c = a F c F d F a F d
18 15 17 imbi12d c = a c d F c F d a d F a F d
19 sseq2 d = a b a d a a b
20 fveq2 d = a b F d = F a b
21 20 sseq2d d = a b F a F d F a F a b
22 19 21 imbi12d d = a b a d F a F d a a b F a F a b
23 18 22 rspc2va a 𝒫 A a b 𝒫 A c 𝒫 A d 𝒫 A c d F c F d a a b F a F a b
24 11 13 14 23 syl21anc c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a a b F a F a b
25 10 24 mpi c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a F a b
26 ssun2 b a b
27 simprr c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A b 𝒫 A
28 sseq1 c = b c d b d
29 fveq2 c = b F c = F b
30 29 sseq1d c = b F c F d F b F d
31 28 30 imbi12d c = b c d F c F d b d F b F d
32 sseq2 d = a b b d b a b
33 20 sseq2d d = a b F b F d F b F a b
34 32 33 imbi12d d = a b b d F b F d b a b F b F a b
35 31 34 rspc2va b 𝒫 A a b 𝒫 A c 𝒫 A d 𝒫 A c d F c F d b a b F b F a b
36 27 13 14 35 syl21anc c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A b a b F b F a b
37 26 36 mpi c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F b F a b
38 25 37 unssd c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a F b F a b
39 38 ralrimivva c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a F b F a b
40 ssequn1 c d c d = d
41 2 uneq1d a = c F a F b = F c F b
42 uneq1 a = c a b = c b
43 42 fveq2d a = c F a b = F c b
44 41 43 sseq12d a = c F a F b F a b F c F b F c b
45 6 uneq2d b = d F c F b = F c F d
46 uneq2 b = d c b = c d
47 46 fveq2d b = d F c b = F c d
48 45 47 sseq12d b = d F c F b F c b F c F d F c d
49 44 48 rspc2va c 𝒫 A d 𝒫 A a 𝒫 A b 𝒫 A F a F b F a b F c F d F c d
50 49 ancoms a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A F c F d F c d
51 50 unssad a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A F c F c d
52 51 adantr a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d = d F c F c d
53 fveq2 c d = d F c d = F d
54 53 adantl a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d = d F c d = F d
55 52 54 sseqtrd a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d = d F c F d
56 55 ex a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d = d F c F d
57 40 56 syl5bi a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d F c F d
58 57 ralrimivva a 𝒫 A b 𝒫 A F a F b F a b c 𝒫 A d 𝒫 A c d F c F d
59 39 58 impbii c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a F b F a b
60 9 59 bitri a 𝒫 A b 𝒫 A a b F a F b a 𝒫 A b 𝒫 A F a F b F a b