| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
sseq1d |
|
| 4 |
1 3
|
imbi12d |
|
| 5 |
|
sseq2 |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
sseq2d |
|
| 8 |
5 7
|
imbi12d |
|
| 9 |
4 8
|
cbvral2vw |
|
| 10 |
|
ssun1 |
|
| 11 |
|
simprl |
|
| 12 |
|
pwuncl |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simpl |
|
| 15 |
|
sseq1 |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
sseq1d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
|
sseq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
sseq2d |
|
| 22 |
19 21
|
imbi12d |
|
| 23 |
18 22
|
rspc2va |
|
| 24 |
11 13 14 23
|
syl21anc |
|
| 25 |
10 24
|
mpi |
|
| 26 |
|
ssun2 |
|
| 27 |
|
simprr |
|
| 28 |
|
sseq1 |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
sseq1d |
|
| 31 |
28 30
|
imbi12d |
|
| 32 |
|
sseq2 |
|
| 33 |
20
|
sseq2d |
|
| 34 |
32 33
|
imbi12d |
|
| 35 |
31 34
|
rspc2va |
|
| 36 |
27 13 14 35
|
syl21anc |
|
| 37 |
26 36
|
mpi |
|
| 38 |
25 37
|
unssd |
|
| 39 |
38
|
ralrimivva |
|
| 40 |
|
ssequn1 |
|
| 41 |
2
|
uneq1d |
|
| 42 |
|
uneq1 |
|
| 43 |
42
|
fveq2d |
|
| 44 |
41 43
|
sseq12d |
|
| 45 |
6
|
uneq2d |
|
| 46 |
|
uneq2 |
|
| 47 |
46
|
fveq2d |
|
| 48 |
45 47
|
sseq12d |
|
| 49 |
44 48
|
rspc2va |
|
| 50 |
49
|
ancoms |
|
| 51 |
50
|
unssad |
|
| 52 |
51
|
adantr |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
adantl |
|
| 55 |
52 54
|
sseqtrd |
|
| 56 |
55
|
ex |
|
| 57 |
40 56
|
biimtrid |
|
| 58 |
57
|
ralrimivva |
|
| 59 |
39 58
|
impbii |
|
| 60 |
9 59
|
bitri |
|