Metamath Proof Explorer


Theorem isotone2

Description: Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021)

Ref Expression
Assertion isotone2 a 𝒫 A b 𝒫 A a b F a F b a 𝒫 A b 𝒫 A F a b F a F b

Proof

Step Hyp Ref Expression
1 sseq1 a = c a b c b
2 fveq2 a = c F a = F c
3 2 sseq1d a = c F a F b F c F b
4 1 3 imbi12d a = c a b F a F b c b F c F b
5 sseq2 b = d c b c d
6 fveq2 b = d F b = F d
7 6 sseq2d b = d F c F b F c F d
8 5 7 imbi12d b = d c b F c F b c d F c F d
9 4 8 cbvral2vw a 𝒫 A b 𝒫 A a b F a F b c 𝒫 A d 𝒫 A c d F c F d
10 inss1 a b a
11 inss2 a b b
12 elpwi b 𝒫 A b A
13 11 12 sstrid b 𝒫 A a b A
14 vex b V
15 14 inex2 a b V
16 15 elpw a b 𝒫 A a b A
17 13 16 sylibr b 𝒫 A a b 𝒫 A
18 17 ad2antll c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a b 𝒫 A
19 simprl c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a 𝒫 A
20 simpl c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A c 𝒫 A d 𝒫 A c d F c F d
21 sseq1 c = a b c d a b d
22 fveq2 c = a b F c = F a b
23 22 sseq1d c = a b F c F d F a b F d
24 21 23 imbi12d c = a b c d F c F d a b d F a b F d
25 sseq2 d = a a b d a b a
26 fveq2 d = a F d = F a
27 26 sseq2d d = a F a b F d F a b F a
28 25 27 imbi12d d = a a b d F a b F d a b a F a b F a
29 24 28 rspc2va a b 𝒫 A a 𝒫 A c 𝒫 A d 𝒫 A c d F c F d a b a F a b F a
30 18 19 20 29 syl21anc c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a b a F a b F a
31 10 30 mpi c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a b F a
32 simprr c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A b 𝒫 A
33 sseq2 d = b a b d a b b
34 fveq2 d = b F d = F b
35 34 sseq2d d = b F a b F d F a b F b
36 33 35 imbi12d d = b a b d F a b F d a b b F a b F b
37 24 36 rspc2va a b 𝒫 A b 𝒫 A c 𝒫 A d 𝒫 A c d F c F d a b b F a b F b
38 18 32 20 37 syl21anc c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A a b b F a b F b
39 11 38 mpi c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a b F b
40 31 39 ssind c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a b F a F b
41 40 ralrimivva c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a b F a F b
42 dfss c d c = c d
43 fveq2 c = c d F c = F c d
44 43 adantl a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c = c d F c = F c d
45 ineq1 a = c a b = c b
46 45 fveq2d a = c F a b = F c b
47 2 ineq1d a = c F a F b = F c F b
48 46 47 sseq12d a = c F a b F a F b F c b F c F b
49 ineq2 b = d c b = c d
50 49 fveq2d b = d F c b = F c d
51 6 ineq2d b = d F c F b = F c F d
52 50 51 sseq12d b = d F c b F c F b F c d F c F d
53 48 52 rspc2va c 𝒫 A d 𝒫 A a 𝒫 A b 𝒫 A F a b F a F b F c d F c F d
54 53 ancoms a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A F c d F c F d
55 inss2 F c F d F d
56 54 55 sstrdi a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A F c d F d
57 56 adantr a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c = c d F c d F d
58 44 57 eqsstrd a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c = c d F c F d
59 58 ex a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c = c d F c F d
60 42 59 syl5bi a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c d F c F d
61 60 ralrimivva a 𝒫 A b 𝒫 A F a b F a F b c 𝒫 A d 𝒫 A c d F c F d
62 41 61 impbii c 𝒫 A d 𝒫 A c d F c F d a 𝒫 A b 𝒫 A F a b F a F b
63 9 62 bitri a 𝒫 A b 𝒫 A a b F a F b a 𝒫 A b 𝒫 A F a b F a F b