Metamath Proof Explorer


Theorem neitx

Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018)

Ref Expression
Hypotheses neitx.x X=J
neitx.y Y=K
Assertion neitx JTopKTopAneiJCBneiKDA×BneiJ×tKC×D

Proof

Step Hyp Ref Expression
1 neitx.x X=J
2 neitx.y Y=K
3 1 neii1 JTopAneiJCAX
4 3 ad2ant2r JTopKTopAneiJCBneiKDAX
5 2 neii1 KTopBneiKDBY
6 5 ad2ant2l JTopKTopAneiJCBneiKDBY
7 xpss12 AXBYA×BX×Y
8 4 6 7 syl2anc JTopKTopAneiJCBneiKDA×BX×Y
9 1 2 txuni JTopKTopX×Y=J×tK
10 9 adantr JTopKTopAneiJCBneiKDX×Y=J×tK
11 8 10 sseqtrd JTopKTopAneiJCBneiKDA×BJ×tK
12 simp-5l JTopKTopAneiJCBneiKDaJCaaAbKDbbBJTopKTop
13 simp-4r JTopKTopAneiJCBneiKDaJCaaAbKDbbBaJ
14 simplr JTopKTopAneiJCBneiKDaJCaaAbKDbbBbK
15 txopn JTopKTopaJbKa×bJ×tK
16 12 13 14 15 syl12anc JTopKTopAneiJCBneiKDaJCaaAbKDbbBa×bJ×tK
17 simpr1l JTopKTopAneiJCBneiKDaJCaaAbKDbbBCa
18 17 3anassrs JTopKTopAneiJCBneiKDaJCaaAbKDbbBCa
19 simprl JTopKTopAneiJCBneiKDaJCaaAbKDbbBDb
20 xpss12 CaDbC×Da×b
21 18 19 20 syl2anc JTopKTopAneiJCBneiKDaJCaaAbKDbbBC×Da×b
22 simpr1r JTopKTopAneiJCBneiKDaJCaaAbKDbbBaA
23 22 3anassrs JTopKTopAneiJCBneiKDaJCaaAbKDbbBaA
24 simprr JTopKTopAneiJCBneiKDaJCaaAbKDbbBbB
25 xpss12 aAbBa×bA×B
26 23 24 25 syl2anc JTopKTopAneiJCBneiKDaJCaaAbKDbbBa×bA×B
27 sseq2 c=a×bC×DcC×Da×b
28 sseq1 c=a×bcA×Ba×bA×B
29 27 28 anbi12d c=a×bC×DccA×BC×Da×ba×bA×B
30 29 rspcev a×bJ×tKC×Da×ba×bA×BcJ×tKC×DccA×B
31 16 21 26 30 syl12anc JTopKTopAneiJCBneiKDaJCaaAbKDbbBcJ×tKC×DccA×B
32 neii2 KTopBneiKDbKDbbB
33 32 ad2ant2l JTopKTopAneiJCBneiKDbKDbbB
34 33 ad2antrr JTopKTopAneiJCBneiKDaJCaaAbKDbbB
35 31 34 r19.29a JTopKTopAneiJCBneiKDaJCaaAcJ×tKC×DccA×B
36 neii2 JTopAneiJCaJCaaA
37 36 ad2ant2r JTopKTopAneiJCBneiKDaJCaaA
38 35 37 r19.29a JTopKTopAneiJCBneiKDcJ×tKC×DccA×B
39 txtop JTopKTopJ×tKTop
40 39 adantr JTopKTopAneiJCBneiKDJ×tKTop
41 1 neiss2 JTopAneiJCCX
42 41 ad2ant2r JTopKTopAneiJCBneiKDCX
43 2 neiss2 KTopBneiKDDY
44 43 ad2ant2l JTopKTopAneiJCBneiKDDY
45 xpss12 CXDYC×DX×Y
46 42 44 45 syl2anc JTopKTopAneiJCBneiKDC×DX×Y
47 46 10 sseqtrd JTopKTopAneiJCBneiKDC×DJ×tK
48 eqid J×tK=J×tK
49 48 isnei J×tKTopC×DJ×tKA×BneiJ×tKC×DA×BJ×tKcJ×tKC×DccA×B
50 40 47 49 syl2anc JTopKTopAneiJCBneiKDA×BneiJ×tKC×DA×BJ×tKcJ×tKC×DccA×B
51 11 38 50 mpbir2and JTopKTopAneiJCBneiKDA×BneiJ×tKC×D