Metamath Proof Explorer


Theorem ngpds3

Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds2.x X=BaseG
ngpds2.z 0˙=0G
ngpds2.m -˙=-G
ngpds2.d D=distG
Assertion ngpds3 GNrmGrpAXBXADB=0˙DA-˙B

Proof

Step Hyp Ref Expression
1 ngpds2.x X=BaseG
2 ngpds2.z 0˙=0G
3 ngpds2.m -˙=-G
4 ngpds2.d D=distG
5 1 2 3 4 ngpds2 GNrmGrpAXBXADB=A-˙BD0˙
6 ngpxms GNrmGrpG∞MetSp
7 6 3ad2ant1 GNrmGrpAXBXG∞MetSp
8 ngpgrp GNrmGrpGGrp
9 1 3 grpsubcl GGrpAXBXA-˙BX
10 8 9 syl3an1 GNrmGrpAXBXA-˙BX
11 8 3ad2ant1 GNrmGrpAXBXGGrp
12 1 2 grpidcl GGrp0˙X
13 11 12 syl GNrmGrpAXBX0˙X
14 1 4 xmssym G∞MetSpA-˙BX0˙XA-˙BD0˙=0˙DA-˙B
15 7 10 13 14 syl3anc GNrmGrpAXBXA-˙BD0˙=0˙DA-˙B
16 5 15 eqtrd GNrmGrpAXBXADB=0˙DA-˙B