Metamath Proof Explorer


Theorem ngpsubcan

Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses ngpsubcan.x X=BaseG
ngpsubcan.m -˙=-G
ngpsubcan.d D=distG
Assertion ngpsubcan GNrmGrpAXBXCXA-˙CDB-˙C=ADB

Proof

Step Hyp Ref Expression
1 ngpsubcan.x X=BaseG
2 ngpsubcan.m -˙=-G
3 ngpsubcan.d D=distG
4 simpr1 GNrmGrpAXBXCXAX
5 simpr3 GNrmGrpAXBXCXCX
6 eqid +G=+G
7 eqid invgG=invgG
8 1 6 7 2 grpsubval AXCXA-˙C=A+GinvgGC
9 4 5 8 syl2anc GNrmGrpAXBXCXA-˙C=A+GinvgGC
10 simpr2 GNrmGrpAXBXCXBX
11 1 6 7 2 grpsubval BXCXB-˙C=B+GinvgGC
12 10 5 11 syl2anc GNrmGrpAXBXCXB-˙C=B+GinvgGC
13 9 12 oveq12d GNrmGrpAXBXCXA-˙CDB-˙C=A+GinvgGCDB+GinvgGC
14 simpl GNrmGrpAXBXCXGNrmGrp
15 ngpgrp GNrmGrpGGrp
16 1 7 grpinvcl GGrpCXinvgGCX
17 15 5 16 syl2an2r GNrmGrpAXBXCXinvgGCX
18 1 6 3 ngprcan GNrmGrpAXBXinvgGCXA+GinvgGCDB+GinvgGC=ADB
19 14 4 10 17 18 syl13anc GNrmGrpAXBXCXA+GinvgGCDB+GinvgGC=ADB
20 13 19 eqtrd GNrmGrpAXBXCXA-˙CDB-˙C=ADB