Metamath Proof Explorer


Theorem ngpsubcan

Description: Cancel right subtraction inside a distance calculation. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses ngpsubcan.x X = Base G
ngpsubcan.m - ˙ = - G
ngpsubcan.d D = dist G
Assertion ngpsubcan G NrmGrp A X B X C X A - ˙ C D B - ˙ C = A D B

Proof

Step Hyp Ref Expression
1 ngpsubcan.x X = Base G
2 ngpsubcan.m - ˙ = - G
3 ngpsubcan.d D = dist G
4 simpr1 G NrmGrp A X B X C X A X
5 simpr3 G NrmGrp A X B X C X C X
6 eqid + G = + G
7 eqid inv g G = inv g G
8 1 6 7 2 grpsubval A X C X A - ˙ C = A + G inv g G C
9 4 5 8 syl2anc G NrmGrp A X B X C X A - ˙ C = A + G inv g G C
10 simpr2 G NrmGrp A X B X C X B X
11 1 6 7 2 grpsubval B X C X B - ˙ C = B + G inv g G C
12 10 5 11 syl2anc G NrmGrp A X B X C X B - ˙ C = B + G inv g G C
13 9 12 oveq12d G NrmGrp A X B X C X A - ˙ C D B - ˙ C = A + G inv g G C D B + G inv g G C
14 simpl G NrmGrp A X B X C X G NrmGrp
15 ngpgrp G NrmGrp G Grp
16 1 7 grpinvcl G Grp C X inv g G C X
17 15 5 16 syl2an2r G NrmGrp A X B X C X inv g G C X
18 1 6 3 ngprcan G NrmGrp A X B X inv g G C X A + G inv g G C D B + G inv g G C = A D B
19 14 4 10 17 18 syl13anc G NrmGrp A X B X C X A + G inv g G C D B + G inv g G C = A D B
20 13 19 eqtrd G NrmGrp A X B X C X A - ˙ C D B - ˙ C = A D B