Metamath Proof Explorer


Theorem nmfn0

Description: The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfn0 normfn×0=0

Proof

Step Hyp Ref Expression
1 0lnfn ×0LinFn
2 lnfnf ×0LinFn×0:
3 nmfnval ×0:normfn×0=supx|ynormy1x=×0y*<
4 1 2 3 mp2b normfn×0=supx|ynormy1x=×0y*<
5 c0ex 0V
6 5 fvconst2 y×0y=0
7 6 fveq2d y×0y=0
8 abs0 0=0
9 7 8 eqtrdi y×0y=0
10 9 eqeq2d yx=×0yx=0
11 10 anbi2d ynormy1x=×0ynormy1x=0
12 11 rexbiia ynormy1x=×0yynormy1x=0
13 ax-hv0cl 0
14 0le1 01
15 fveq2 y=0normy=norm0
16 norm0 norm0=0
17 15 16 eqtrdi y=0normy=0
18 17 breq1d y=0normy101
19 18 rspcev 001ynormy1
20 13 14 19 mp2an ynormy1
21 r19.41v ynormy1x=0ynormy1x=0
22 20 21 mpbiran ynormy1x=0x=0
23 12 22 bitri ynormy1x=×0yx=0
24 23 abbii x|ynormy1x=×0y=x|x=0
25 df-sn 0=x|x=0
26 24 25 eqtr4i x|ynormy1x=×0y=0
27 26 supeq1i supx|ynormy1x=×0y*<=sup0*<
28 xrltso <Or*
29 0xr 0*
30 supsn <Or*0*sup0*<=0
31 28 29 30 mp2an sup0*<=0
32 4 27 31 3eqtri normfn×0=0