Metamath Proof Explorer


Theorem nmopub2tALT

Description: An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nmopub2tALT T:A0AxnormTxAnormxnormopTA

Proof

Step Hyp Ref Expression
1 normcl xnormx
2 1 ad2antlr T:A0Axnormx1normx
3 simpllr T:A0Axnormx1A0A
4 simpr T:A0Axnormx1normx1
5 1re 1
6 lemul2a normx1A0Anormx1AnormxA1
7 5 6 mp3anl2 normxA0Anormx1AnormxA1
8 2 3 4 7 syl21anc T:A0Axnormx1AnormxA1
9 ax-1rid AA1=A
10 9 ad2antrl T:A0AA1=A
11 10 ad2antrr T:A0Axnormx1A1=A
12 8 11 breqtrd T:A0Axnormx1AnormxA
13 ffvelcdm T:xTx
14 normcl TxnormTx
15 13 14 syl T:xnormTx
16 15 adantlr T:A0AxnormTx
17 remulcl AnormxAnormx
18 1 17 sylan2 AxAnormx
19 18 adantlr A0AxAnormx
20 19 adantll T:A0AxAnormx
21 simplrl T:A0AxA
22 letr normTxAnormxAnormTxAnormxAnormxAnormTxA
23 16 20 21 22 syl3anc T:A0AxnormTxAnormxAnormxAnormTxA
24 23 adantr T:A0Axnormx1normTxAnormxAnormxAnormTxA
25 12 24 mpan2d T:A0Axnormx1normTxAnormxnormTxA
26 25 ex T:A0Axnormx1normTxAnormxnormTxA
27 26 com23 T:A0AxnormTxAnormxnormx1normTxA
28 27 ralimdva T:A0AxnormTxAnormxxnormx1normTxA
29 28 imp T:A0AxnormTxAnormxxnormx1normTxA
30 rexr AA*
31 30 adantr A0AA*
32 nmopub T:A*normopTAxnormx1normTxA
33 31 32 sylan2 T:A0AnormopTAxnormx1normTxA
34 33 biimpar T:A0Axnormx1normTxAnormopTA
35 29 34 syldan T:A0AxnormTxAnormxnormopTA
36 35 3impa T:A0AxnormTxAnormxnormopTA