Metamath Proof Explorer


Theorem nmosetn0

Description: The set in the supremum of the operator norm definition df-nmoo is nonempty. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmosetn0.1 X=BaseSetU
nmosetn0.5 Z=0vecU
nmosetn0.4 M=normCVU
Assertion nmosetn0 UNrmCVecNTZx|yXMy1x=NTy

Proof

Step Hyp Ref Expression
1 nmosetn0.1 X=BaseSetU
2 nmosetn0.5 Z=0vecU
3 nmosetn0.4 M=normCVU
4 1 2 nvzcl UNrmCVecZX
5 2 3 nvz0 UNrmCVecMZ=0
6 0le1 01
7 5 6 eqbrtrdi UNrmCVecMZ1
8 eqid NTZ=NTZ
9 7 8 jctir UNrmCVecMZ1NTZ=NTZ
10 fveq2 y=ZMy=MZ
11 10 breq1d y=ZMy1MZ1
12 2fveq3 y=ZNTy=NTZ
13 12 eqeq2d y=ZNTZ=NTyNTZ=NTZ
14 11 13 anbi12d y=ZMy1NTZ=NTyMZ1NTZ=NTZ
15 14 rspcev ZXMZ1NTZ=NTZyXMy1NTZ=NTy
16 4 9 15 syl2anc UNrmCVecyXMy1NTZ=NTy
17 fvex NTZV
18 eqeq1 x=NTZx=NTyNTZ=NTy
19 18 anbi2d x=NTZMy1x=NTyMy1NTZ=NTy
20 19 rexbidv x=NTZyXMy1x=NTyyXMy1NTZ=NTy
21 17 20 elab NTZx|yXMy1x=NTyyXMy1NTZ=NTy
22 16 21 sylibr UNrmCVecNTZx|yXMy1x=NTy