Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmoubi.1 | |
|
nmoubi.y | |
||
nmoubi.l | |
||
nmoubi.m | |
||
nmoubi.3 | |
||
nmoubi.u | |
||
nmoubi.w | |
||
Assertion | nmounbseqi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoubi.1 | |
|
2 | nmoubi.y | |
|
3 | nmoubi.l | |
|
4 | nmoubi.m | |
|
5 | nmoubi.3 | |
|
6 | nmoubi.u | |
|
7 | nmoubi.w | |
|
8 | 1 2 3 4 5 6 7 | nmounbi | |
9 | 8 | biimpa | |
10 | nnre | |
|
11 | 10 | imim1i | |
12 | 11 | ralimi2 | |
13 | 1 | fvexi | |
14 | nnenom | |
|
15 | fveq2 | |
|
16 | 15 | breq1d | |
17 | 2fveq3 | |
|
18 | 17 | breq2d | |
19 | 16 18 | anbi12d | |
20 | 13 14 19 | axcc4 | |
21 | 9 12 20 | 3syl | |