Metamath Proof Explorer


Theorem nmounbseqi

Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X=BaseSetU
nmoubi.y Y=BaseSetW
nmoubi.l L=normCVU
nmoubi.m M=normCVW
nmoubi.3 N=UnormOpOLDW
nmoubi.u UNrmCVec
nmoubi.w WNrmCVec
Assertion nmounbseqi T:XYNT=+∞ff:XkLfk1k<MTfk

Proof

Step Hyp Ref Expression
1 nmoubi.1 X=BaseSetU
2 nmoubi.y Y=BaseSetW
3 nmoubi.l L=normCVU
4 nmoubi.m M=normCVW
5 nmoubi.3 N=UnormOpOLDW
6 nmoubi.u UNrmCVec
7 nmoubi.w WNrmCVec
8 1 2 3 4 5 6 7 nmounbi T:XYNT=+∞kyXLy1k<MTy
9 8 biimpa T:XYNT=+∞kyXLy1k<MTy
10 nnre kk
11 10 imim1i kyXLy1k<MTykyXLy1k<MTy
12 11 ralimi2 kyXLy1k<MTykyXLy1k<MTy
13 1 fvexi XV
14 nnenom ω
15 fveq2 y=fkLy=Lfk
16 15 breq1d y=fkLy1Lfk1
17 2fveq3 y=fkMTy=MTfk
18 17 breq2d y=fkk<MTyk<MTfk
19 16 18 anbi12d y=fkLy1k<MTyLfk1k<MTfk
20 13 14 19 axcc4 kyXLy1k<MTyff:XkLfk1k<MTfk
21 9 12 20 3syl T:XYNT=+∞ff:XkLfk1k<MTfk