Metamath Proof Explorer


Theorem nmparlem

Description: Lemma for nmpar . (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmpar.v V=BaseW
nmpar.p +˙=+W
nmpar.m -˙=-W
nmpar.n N=normW
nmpar.h ,˙=𝑖W
nmpar.f F=ScalarW
nmpar.k K=BaseF
nmpar.1 φWCPreHil
nmpar.2 φAV
nmpar.3 φBV
Assertion nmparlem φNA+˙B2+NA-˙B2=2NA2+NB2

Proof

Step Hyp Ref Expression
1 nmpar.v V=BaseW
2 nmpar.p +˙=+W
3 nmpar.m -˙=-W
4 nmpar.n N=normW
5 nmpar.h ,˙=𝑖W
6 nmpar.f F=ScalarW
7 nmpar.k K=BaseF
8 nmpar.1 φWCPreHil
9 nmpar.2 φAV
10 nmpar.3 φBV
11 5 1 2 8 9 10 9 10 cph2di φA+˙B,˙A+˙B=A,˙A+B,˙B+A,˙B+B,˙A
12 5 1 3 8 9 10 9 10 cph2subdi φA-˙B,˙A-˙B=A,˙A+B,˙B-A,˙B+B,˙A
13 11 12 oveq12d φA+˙B,˙A+˙B+A-˙B,˙A-˙B=A,˙A+B,˙B+A,˙B+B,˙A+A,˙A+B,˙B-A,˙B+B,˙A
14 cphclm WCPreHilWCMod
15 8 14 syl φWCMod
16 6 7 clmsscn WCModK
17 15 16 syl φK
18 cphphl WCPreHilWPreHil
19 8 18 syl φWPreHil
20 6 5 1 7 ipcl WPreHilAVAVA,˙AK
21 19 9 9 20 syl3anc φA,˙AK
22 6 5 1 7 ipcl WPreHilBVBVB,˙BK
23 19 10 10 22 syl3anc φB,˙BK
24 6 7 clmacl WCModA,˙AKB,˙BKA,˙A+B,˙BK
25 15 21 23 24 syl3anc φA,˙A+B,˙BK
26 17 25 sseldd φA,˙A+B,˙B
27 6 5 1 7 ipcl WPreHilAVBVA,˙BK
28 19 9 10 27 syl3anc φA,˙BK
29 6 5 1 7 ipcl WPreHilBVAVB,˙AK
30 19 10 9 29 syl3anc φB,˙AK
31 6 7 clmacl WCModA,˙BKB,˙AKA,˙B+B,˙AK
32 15 28 30 31 syl3anc φA,˙B+B,˙AK
33 17 32 sseldd φA,˙B+B,˙A
34 26 33 26 ppncand φA,˙A+B,˙B+A,˙B+B,˙A+A,˙A+B,˙B-A,˙B+B,˙A=A,˙A+B,˙B+A,˙A+B,˙B
35 13 34 eqtrd φA+˙B,˙A+˙B+A-˙B,˙A-˙B=A,˙A+B,˙B+A,˙A+B,˙B
36 cphlmod WCPreHilWLMod
37 8 36 syl φWLMod
38 1 2 lmodvacl WLModAVBVA+˙BV
39 37 9 10 38 syl3anc φA+˙BV
40 1 5 4 nmsq WCPreHilA+˙BVNA+˙B2=A+˙B,˙A+˙B
41 8 39 40 syl2anc φNA+˙B2=A+˙B,˙A+˙B
42 1 3 lmodvsubcl WLModAVBVA-˙BV
43 37 9 10 42 syl3anc φA-˙BV
44 1 5 4 nmsq WCPreHilA-˙BVNA-˙B2=A-˙B,˙A-˙B
45 8 43 44 syl2anc φNA-˙B2=A-˙B,˙A-˙B
46 41 45 oveq12d φNA+˙B2+NA-˙B2=A+˙B,˙A+˙B+A-˙B,˙A-˙B
47 1 5 4 nmsq WCPreHilAVNA2=A,˙A
48 8 9 47 syl2anc φNA2=A,˙A
49 1 5 4 nmsq WCPreHilBVNB2=B,˙B
50 8 10 49 syl2anc φNB2=B,˙B
51 48 50 oveq12d φNA2+NB2=A,˙A+B,˙B
52 51 oveq2d φ2NA2+NB2=2A,˙A+B,˙B
53 26 2timesd φ2A,˙A+B,˙B=A,˙A+B,˙B+A,˙A+B,˙B
54 52 53 eqtrd φ2NA2+NB2=A,˙A+B,˙B+A,˙A+B,˙B
55 35 46 54 3eqtr4d φNA+˙B2+NA-˙B2=2NA2+NB2