Metamath Proof Explorer


Theorem nmrtri

Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of Kreyszig p. 64. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmmtri.m -˙=-G
Assertion nmrtri GNrmGrpAXBXNANBNA-˙B

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmmtri.m -˙=-G
4 ngpms GNrmGrpGMetSp
5 4 3ad2ant1 GNrmGrpAXBXGMetSp
6 simp2 GNrmGrpAXBXAX
7 simp3 GNrmGrpAXBXBX
8 ngpgrp GNrmGrpGGrp
9 8 3ad2ant1 GNrmGrpAXBXGGrp
10 eqid 0G=0G
11 1 10 grpidcl GGrp0GX
12 9 11 syl GNrmGrpAXBX0GX
13 eqid distG=distG
14 1 13 msrtri GMetSpAXBX0GXAdistG0GBdistG0GAdistGB
15 5 6 7 12 14 syl13anc GNrmGrpAXBXAdistG0GBdistG0GAdistGB
16 2 1 10 13 nmval AXNA=AdistG0G
17 16 3ad2ant2 GNrmGrpAXBXNA=AdistG0G
18 2 1 10 13 nmval BXNB=BdistG0G
19 18 3ad2ant3 GNrmGrpAXBXNB=BdistG0G
20 17 19 oveq12d GNrmGrpAXBXNANB=AdistG0GBdistG0G
21 20 fveq2d GNrmGrpAXBXNANB=AdistG0GBdistG0G
22 2 1 3 13 ngpds GNrmGrpAXBXAdistGB=NA-˙B
23 22 eqcomd GNrmGrpAXBXNA-˙B=AdistGB
24 15 21 23 3brtr4d GNrmGrpAXBXNANBNA-˙B