Metamath Proof Explorer


Theorem nn0disj

Description: The first N + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019)

Ref Expression
Assertion nn0disj 0NN+1=

Proof

Step Hyp Ref Expression
1 elinel2 k0NN+1kN+1
2 eluzle kN+1N+1k
3 1 2 syl k0NN+1N+1k
4 eluzel2 kN+1N+1
5 1 4 syl k0NN+1N+1
6 eluzelz kN+1k
7 1 6 syl k0NN+1k
8 zlem1lt N+1kN+1kN+1-1<k
9 5 7 8 syl2anc k0NN+1N+1kN+1-1<k
10 3 9 mpbid k0NN+1N+1-1<k
11 elinel1 k0NN+1k0N
12 elfzle2 k0NkN
13 11 12 syl k0NN+1kN
14 7 zred k0NN+1k
15 elin k0NN+1k0NkN+1
16 elfzel2 k0NN
17 16 adantr k0NkN+1N
18 15 17 sylbi k0NN+1N
19 18 zred k0NN+1N
20 14 19 lenltd k0NN+1kN¬N<k
21 18 zcnd k0NN+1N
22 pncan1 NN+1-1=N
23 21 22 syl k0NN+1N+1-1=N
24 23 eqcomd k0NN+1N=N+1-1
25 24 breq1d k0NN+1N<kN+1-1<k
26 25 notbid k0NN+1¬N<k¬N+1-1<k
27 20 26 bitrd k0NN+1kN¬N+1-1<k
28 13 27 mpbid k0NN+1¬N+1-1<k
29 10 28 pm2.21dd k0NN+1k
30 29 ssriv 0NN+1
31 ss0 0NN+10NN+1=
32 30 31 ax-mp 0NN+1=